Sheloil.ru

Шелл Оил
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок питания с регулировкой тока и напряжения своими руками

Блок питания с регулировкой тока и напряжения своими руками

Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.

Хватит слов приступим к делу!

На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.

Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.

Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.

Как работает регулировка тока?

В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.

Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.

А, вот и печатная плата!

На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатную плату вы можете изготовить с помощью лазерно утюжной технологии для продвинутых, а также навесным монтажом этот способ больше подходит для начинающих радиолюбителей и они о нем прекрасно знают. Для изготовления печатной платы вам понадобиться фольгированный стеклотекстолит размером 100х83 мм. Большинство деталей устанавливаются на печатной плате за исключением транзисторов Т2, Т3, Т4, Т5, а также стабилизатор напряжения L7812CV и резисторы R2, R3, Р1, Р2. Биполярные транзисторы Т2 и Т3 устанавливаются на отдельном радиаторе без изоляционных прокладок, потому, что коллекторы транзисторов все равно по схеме соединяются вместе. Полевые транзисторы Т4, Т5 надо тоже установить на отдельном радиаторе без изоляции.

Читайте так же:
Регулировка холостого хода карбюратора к126г

На этом рисунке изображены два радиатора с установленными транзисторами. Между собой радиаторы скреплены двумя лентами двухстороннего автомобильного скотча выполняющего роль электро изоляции. Сверху к радиаторам прикручена винтами пластиковая скрепляющая пластина, придающая жесткость конструкции. К ней будет крепиться дополнительная пластина с печатной платой и вентилятор.

Радиатор с транзисторами

Поскольку уравнительные резисторы R2 и R3 довольно большого размера для их предусмотрена специальная печатная плата, которая изображена на этом рисунке. Размер печатной платы 85х40 мм.

Печатная плата блока резисторов

Печатная плата блока резисторов

Стабилизатор напряжения L7812CV надо закрепить на отдельный радиатор от компьютерного блока питания, потому, что в процессе работы он сильно нагревается. На этой картинке он находится в самом низу на радиаторе от компьютерного блока питания. С правой стороны вы увидите плату с уравнительными резисторами R2 и R3. Транзистор Т1 установлен на маленький радиатор. Переменные резисторы Р1 и Р2 тоже вынесены на верхнюю панель. Диодная сборка установлена на отдельном радиаторе, при большой нагрузке она очень сильно греется.

Блок питания с регулировкой тока и напряжения

Для охлаждения радиаторов к установленному в блоке питания стабилизатору напряжения L7812CV я подключил вентилятор размером 120х120 мм, он отлично справляется со своей задачей.

Блок питания с регулировкой тока и напряжения

Если вы хотите подключить вентилятор от дополнительной обмотки трансформатора, тогда вам надо поставить дополнительный стабилизатор напряжения по этой схеме.

Схема подключения вентилятора

Схема подключения вентилятора

Как подключить Китайский вольтметр амперметр?

При подключении Китайских электронных вольтметров амперметров возникает очень много различных проблем, то показания скачут, то завышает, то занижает, кому то бракованный прислали, вообщем качество Китайских приборов оставляет желать лучшего. Китайцы продают на АлиЭкспресс две модели чудо приборов. Первая модель имеет два тонких провода красный и черный, три толстых, красный, черный и синий. У второй модели три тонких провода, красный, черный, желтый и два толстых, красный и черный. Чтобы это Китайское чудо правильно работало и не искажало показания, надо знать простое правило, питание у прибора должно быть отдельное потому, что у прибора нет гальванической развязки и поэтому питание на Китайский вольтметр амперметр обязательно надо брать с дополнительной обмотки трансформатора или дополнительного источника питания, для этих целей идеально подойдет зарядка от телефона.

А лучше всего сделать выбор в сторону Китайских стрелочных аналоговых приборов класса точности 2.5. Поставить отдельно вольтметр и амперметр будет намного проще и точнее. Выбор остается за вами.

На этом рисунке изображена схема подключения Китайского вольтметра амперметра.

Схема подключения китайского вольтметра амперметра к регулируемому блоку питания

Схема подключения китайского вольтметра амперметра к блоку питания

Испытания блока питания

Пришло время испытать блок питания в деле. У микросхемы TL431 есть такая особенность, нижний порог напряжения 2.4 вольта, поэтому в блоке питания напряжение регулируется от 2.4 вольта до 27.4 вольта. Без нагрузки я выставил напряжение 12.5 вольт и подключил галогеновую лампу Н4. Напряжение под нагрузкой упало до 12.3 вольта, просадка составила всего 0.2 вольта при силе тока 4.88 ампера. Это очень хороший результат. Микросхема TL431 прекрасно стабилизирует напряжение. Как работает ограничение тока смотрите в видеоролике.

Блок питания с регулировкой тока и напряжения

Как заряжать автомобильный аккумулятор?

Ну и самое интересное, это использование блока питания в качестве зарядного устройства для автомобильного аккумулятора. При выключенном блоке питания подключаем аккумулятор. Если горит зеленый светодиод, значит все подключено правильно. Что будет если поменять клеймы местами? А, ничего… Просто загорится красный светодиод, означающий ошибку в подключении.

Зарядное устройство для автомобильного аккумулятора

Далее отключаем минусовую клейму, включаем блок питания и выставляем на блоке 14.5 вольт. Подключаем минусовую клейму к аккумулятору. И ручкой регулировки тока выставляем в начале зарядки ток не более 6 ампер для 60 амперного аккумулятора. К концу зарядки ток упадет до 0.1 ампера, а напряжение поднимется до 14.5 вольт. Это будет говорить о том, что аккумулятор полностью заряжен.

Для любителей «чем проще, тем лучше,» предлагаю собрать упрощенную схему блока питания на 15А

Читайте так же:
Мшу диолд с регулировкой оборотов

Данная схема регулируемого блока питания с регулировкой напряжения и тока рассчитана на максимальный ток до 15А. В ней отсутствуют дополнительные силовые транзисторы и уравнительные резисторы, что немного упрощает схему и делает её более бюджетной по сравнению со схемой на 30А.

Схема блока питания с регулировкой тока и напряжения 2.4. 28В 15А

Схема блока питания с регулировкой тока и напряжения 2.4…28В 15А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В. Размер платы 100х60 мм.

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

Радиодетали для сборки

Регулируемый блок питания с регулировкой тока и напряжения 30А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 50А KBPC5010
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2, R3 0.1 Ом 20 Вт, R4 100 Ом, R5, R6 47 Ом, R7, R8 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 2шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2, Т3 TIP35C, КТ 867А, Т4, Т5 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Регулируемый блок питания с регулировкой тока и напряжения 15А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 25А KBPC2510
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2 100 Ом, R3 47 Ом, R4, R5 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2 TIP35C, КТ 867А, Т3 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Чем заменить микросхему TL431?

Аналогом микросхемы TL431 является регулируемый стабилитрон КА431, из советских КР142ЕН19А, К1156ЕР5Х

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой тока и напряжения своими руками

Блок питания с регулировкой тока и напряжения.

Для удобства питания электронных поделок, «разгона» и подзарядки в ручном режиме разных аккумуляторов, а также для мелкого ремонта разной домашней электроники хотел купить красивый китайский «лабораторный» блок питания, но почитав обзоры и пролистав цены решил, что качество этих поделок не соответствует цене. Кроме того, хотелось иметь на выходе напряжение до 21-25В, а это уже следующая ценовая категория китайских лабораторных блоков.

В общем, изучив что имелось в закромах, докупил недостающие элементы паззла, и собрал простой бюджетный блок питания, дальше перечень деталей с текущими ценами:

1) Корпус автоматического выключателя – 15грн.

2) Трансформатор понижающий ОСМ1-0,063 220/5-24 – 50грн.

3) Диодный мост на 6А (с запасом, так как трансформатор способен выдать только 2,6А при 24В) – 14грн.

4) Конденсатор электролитический 4700мкФ, 50В – 15грн.

5) Импульсный DC-DC преобразователь на базе XLSEMI XL4015, с регулировкой тока и напряжения (вход 8 — 36В (допускается до 40В), выход 1,25-32В, ток до 5А, 180КГц, КПД до 96%, 75Вт) – 72грн.

6) Цифровой вольтамперметр 100В, 10А (обязательно с запаянным шунтом, напряжение питания 4,5 — 30В) – 90грн.

7) Два однооборотных резистора по 10кОм (R16110N-A10K) – 24грн.

8) 2 гнезда, 2 штекера, 2 «крокодила» – 25грн.

9) usb гнездо – 12грн.

10) Вилка «евро» – 18грн.

11) Провод питания – 5грн.

Итого: 340грн, что на данный момент примерно равно 12,6$.

Ближайший по цене заводской аналог на 1-2А и 15В (типа 1502D и т.п.) стоит от 30$.
Варианты на 30В – от 65$.

Пока не сложил сумму – казалось дешевле, причем в сумму не вошла стоимость пересылки некоторых плат, но не в этом суть.

Собирается все элементарно, ибо конструктор, единственное что может замедлить процесс сборки – подключение вольтамперметра, так как существует масса модификаций данных устройств, и я знаю как минимум два варианта подключения с виду почти одинаковых приборов. Необходимо сверяться с информацией от продавца вольтамперметра, бывают переставлены местами провода входа и выхода замера тока.

Читайте так же:
Винты регулировка фар депо

В моем случае был ещё одни момент – при том, что с трансформатора выходит 25В, напряжение на входе XL4015 составило 37В, что является практически максимально допустимым пределом, но так как в справочной информации указано, что на самом деле допускается входное напряжение до 40В — данный вариант работает, но на душе не спокойно.

В итоге, переключил одну клемму на контакт обмотки 5В, таким образом на выходе трансформатора 19-20В переменного напряжения, после выпрямителя около 29-30В, и теперь максимальное напряжение на выходе с 33В упало до 26В, что вполне приемлемо.

С целью возможности отображения на индикаторе напряжений от 1,25В — питание на вольтамперметр подал с входа XL4015 через 1Вт резистор номиналом 620 Ом.
В дальнейшем планирую добавить преобразователь напряжения на базе LM2596 (допустимое входное напряжение до 45В) или MC34063 (допустимое входное напряжение до 40В) для получения +5В для питания USB гнезда, но пока временно USB гнездо подключил к выходу XL4015. На данный момент бездумно вставлять USB шнурки нельзя, но вариант рабочий.

Так как пульсации замерить нечем, да и так понятно, что блок не лабораторный, ниже немного простых субъективных впечатлений.

— разрозненно хранящийся хлам был собран в одну компактную коробку, и начал приносить реальную пользу;

— регулировки тока и напряжения работают, максимальное напряжение на выходе отображается 33В/26В, максимум по току кратковременно наблюдал 4,1А при проверке с подключенной автомобильной лампой ближнего/дальнего света, но пока нет радиатора на XL4015, и учитывая возможности катушки на плате преобразователя – эксперименты прекратил;

— судя по показаниям двух мультиметров, и без претензий на точность — «из коробки» вольтамперметр врёт примерно на 0,5В в плюсовую стороны, и судя по обзорам – это общая проблема, но резистор регулировки позволяет выйти в ноль при напряжениях примерно до 10В, дальше продолжает завышать на 0,1-0,3В в плюс, так что качеством вольтамперметра не очень доволен;

— после примерно 0,8-1А начинает заметно занижать ток, для 2А разница составляет 0,15-0,18А, пока не регулировал;

— немного греется XL4015, если особо не грузить — можно оставить как есть, но лучше — приклеить на микросхему радиатор;

— гудит, что в общем, предсказуемо )

С удовольствием выслушаю предложения и замечания, так как учитывая напряжение питания преобразователя на грани фола, данный вариант требует доработки.

Update:
Ниже финальная версия с отдельным шим преобразователем на MC34063 для получения 5В на USB разъёме.
Собрано по схеме из datasheet, с отступлениями на то, что было в наличии. Ток ограничен

900мА (6 резисторов по 1 Ом в параллель).

  • +4
  • 26 января 2016, 21:17

Комментарии ( 92 )

Изначально и собирался сделать на базе импульсного блока питания от ноутбука, но не нашел подходящего корпуса, единственный вариант — нужно было пилить CD/DVD привод, но возможно я к этому вернусь, тем более что в этом блоке ни одного индикатора не ввел, спешил. Или как приставку сделаю — отдельно БП, отдельно схема преобразователя и управления.

А лишний блок питания от ноута пока используется в качестве зарядного устройства для аккумулятора шуруповерта — перевел 18В шуруповерт на литиевые 18650 банки от батареи ноутбука. В корпусе старой батареи спаял банки 3х2, соеднил последовательно, запитал от 20В через преобразователь напряжения на LM2596, выставив напряжение на татареи 12,7В.

Сначала думал соединить 4 банки последовательно, и получить 16,8В, но все 6 банок оказались рабочими, а сдох контроллер, попробовал вариант 3х2, т.е. 12,6В, так и оставил. Впечатление такое, что момент возрос, хоть скорость и заметно упала. Из рук выпрыгивает при старте 🙂

Читайте так же:
Регулировка давления гидроблока dp0

Думал тоже написать, но без индикации окончания заряда и с зарядко без балансировки вроде бы и не о чем…

Лабораторный блок питания нищеброда


DC-DC Step Down XL4016

ТТХ:
Входное напряжение: 7V — 40V
Выходное напряжение: 1.25V — 35V
Выходной ток: 0.3A — 10A

Для нормально отображения перехода с CV в CC схема индикации требует небольшой доработки. Режем дорожку между 7-й ногой ОУ LM358 и затвором VT1. Соединяем перемычкой затвор VT1 с 1-й ногой ОУ LM358. Удаляем синий светодиод с затвора. После доработки — красный загорается при срабатывании CC.


схема модуля на XL4016

Два дня ушло на рисование классики. Все детали спроектированы для печати без поддержек.


корпус для модуля на XL4016

$5. В качестве первичного источника использовал старый БП от ноутбука фирмы HP, модель PPP017S. Выходное напряжение 18.5В, ток 6.5А. Для питания вентилятора и линии +5V использовал MP1584 из этого обзора.

Многооборотные резисторы BOCHEN WXD3-13-2W на 10кОм, 2 штуки. Показометр DSN-VC288 — тормоз, не возможно настроить на весь диапазон 0В-100В. Врет или в начале, или в конце. Кое-как настроил на 0В-30В. По току совсем печально — ток 0.3А показывает 0.7А, ток 3.5А показывает 5.5А и регулировки не хватает скомпенсировать это безобразие. Если напряжение первичного источника "Supply Power" меньше 30В, то "Isolated Power" можно запитать от "Supply Power", что и было сделано.


подключение DSN-VC288

адЪ электрика

морда дешмаского ЛБП

Для USB использовал такие платы. Ищутся по "Type-A Female USB To DIP 2.54mm PCB Connecto". Оптом от 5-10 штук дешевле.


Type-A Female USB To DIP 2.54mm PCB Connector</span>

Выставил 12В/10А и снял пульсации осциллографом с закрытым входом. В качестве нагрузки автомобильная лампочка дальнего света. Получилось 20мВ с частотой 166кГц. Отличный результат.


пульсации 20мВ на 12В/10А

При выдергивании нагрузки в режиме CC, модуль не горит и не плавится. Из недостатков — на моем экземпляре не удалось выставить ниже 1.4В по напряжению и 0.3А по току. Огромная входная ёмкость конденсаторов. Еще один косяк — при минимальном напряжении 1.4В ограничение тока не работает и модуль выдает на все деньги, около 12А.

UDP: Мне тут подсказали, что глюк с 12А устраняется добавлением резистора 100Ом — 5.1кОм в разрыв между 2-й ногой XL4016 и выходом регулируемого делителя напряжения R9-R11-R12. Схема после всех доработок


схема модуля на XL4016 после доработки

фото модуля после ножа

Понижающий DC-DC преобразователь XL4015 с регулировкой напряжения и тока (синий) Преобразователи питания

Понижающий DC-DC преобразователь XL4015 с регулировкой напряжения и тока (синий) Преобразователи питания

Модуль понижения напряжения постоянного тока XL4015 5A DC-DC работает с фиксированной частотой 180 кГц.
Способен управлять нагрузкой до 5A с высокой эффективностью, низким уровнем пульсаций и превосходным регулированием линии и нагрузки.
Модуль в которых входное напряжение выше, чем выходное, например аккумулятор
Используется в таких системах как силовой трансформатор, регулируемый источник питания, ЖК-монитор или ЖК-телевизор, портативное измерительное оборудование для телекоммуникационного / сетевого оборудования, питание ноутбука.
Этот модуль имеет регулируемое выходное напряжение.
Также работает как специальное зарядное устройство для литиевых батарей (Li-Ion , LiPo), поскольку оно способно контролировать как напряжение, так и ток.

Использование

— в качестве понижающего модуля

Отрегулируйте «потенциометр напряжения», чтобы выходное напряжение достигло желаемого значения.

— в качестве зарядного устройства

Убедитесь, что вам необходимо зарядить оборудование с правильным напряжением и ток зарядки.
Если Li-Ion , LiPo аккумуляторы имеют параметры, например 3,7 В / 2200 мАч, то максимальное напряжение 4,2 В, а максимальный зарядный ток 1C, т.е. 2200 мА
В условиях холостого хода отрегулируйте «Потенциометр напряжения» так, чтобы выходное напряжение достигало напряжения до 4,2 В
Используйте мультиметр для измерения тока нагрузки, регулируя при этом «Потенциометр тока», чтобы выходной ток достигал предварительно определенного значения тока зарядки 2200 мА.
Заводское значение по умолчанию в 0,1 раза больше зарядного тока
Во время зарядки ток постепенно уменьшается, если значение тока зарядки равно 1А, то когда ток зарядки меньше 0,1 А, синие Led выключены, зеленый Led включен, что означает, что батарея полностью заряжена
Подключите к заряду аккумулятора, только после настройки модуля

Читайте так же:
Что измениться если отрегулировать клапана

— в качестве светодиодного модуля драйвера постоянного тока (Led подсветка)

Отрегулируйте «потенциометр напряжения», чтобы выходное напряжение достигло желаемого значения.
Используйте мультиметр для измерения выходного тока, регулируя при этом «Потенциометр тока» так, чтобы выходной ток достигал предварительно определенного тока.
Подключите светодиод.

Технические характеристики

Входное напряжение (В): 4 — 38
Выходное напряжение (В): 1,25 — 36
Выходной ток (А): до 5
Выходная мощность (Вт): 75
Эффективность, КПД (%): до 96
Гальваническая развязка: есть
Размеры (мм): 60×21×17

Способы и сроки доставки

Самовывоз

Вы можете забрать свой заказ самостоятельно в часы работы (Пн-Пт 10.00-18.00) офиса по адресу Староватутинский проезд д.12/3 (м Бабушкинская).
Обязательно ознакомьтесь со схемой прохода/проезда в разделе Контакты.
Внимание! Въезд на территорию на автомобиле не доступен. Машину можно оставить рядом на бесплатной парковке.
Вход на территорию свободный.
Оплата заказа осуществляется наличными. Возможен перевод на банковскую карту.
Схема проезда

Курьером по г. Москва до двери в пределах МКАД – по вашему адресу

1-2 рабочих дня, с 10:00 до 19:00
Стоимость доставки 350 руб.

В 95% случаев отправляем на следующий рабочий день.

Транспортной компанией “СДЭК” – до пункта выдачи заказов в Вашем населённом пункте

Заказ передается в СДЭК в течение 1 рабочего дня
Оплата возможна при получении
Cрок доставки составляет в среднем около 5 рабочих дней, в зависимости от удаленности региона
После оформления заказа на электронный адрес указанный при оформлении высылается трек-номер для отслеживания
Стоимость доставки рассчитывается автоматически​. При заказе от 3000 р – доставка до пункта выдачи бесплатно.
Найти пункт выдачи заказов в вашем регионе

Транспортной компанией “СДЭК” – по вашему адресу

Заказ передается в СДЭК в течение 1 рабочего дня
Оплата возможна при получении, при этом наложенный платеж взимаемый транспортной компанией указывается при оформлении заказа.
Cрок доставки составляет в среднем около 2 рабочих дней, в зависимости от удаленности региона
После оформления заказа на электронный адрес указанный при оформлении высылается трек-номер для отслеживания
Стоимость доставки рассчитывается автоматически

Почтой России – до почтового отделения в Вашем населённом пункте

Заказ передается на Почту в течении 1-2 рабочих дней после 100% оплаты
Срок доставки составляет в среднем около 5 рабочих дней, в зависимости от удаленности региона
После оформления заказа на электронный адрес указанный при оформлении высылается трек-номер для отслеживания
Стоимость доставки рассчитывается автоматически
Найти отделение Почты России в вашем регионе

Способы оплаты

Оплата банковской картой

Оплата заказа может быть произведена с использованием банковской карты VISA, Maestro, MasterCard, МИР и другими. Оплата осуществляется прямо на сайте непосредственно после оформления заказа.

Для оплаты (ввода реквизитов Вашей карты) Вы будете перенаправлены на платежный шлюз АО «Тинькофф Банк». Соединение с платежным шлюзом и передача информации осуществляется в защищенном режиме с использованием протокола шифрования SSL. В случае если Ваш банк поддерживает технологию безопасного проведения интернет-платежей Verified By Visa или MasterCard SecureCode для проведения платежа также может потребоваться ввод специального пароля.
Наш сайт поддерживает 256-битное шифрование. Конфиденциальность сообщаемой персональной информации обеспечивается АО «Тинькофф Банк» в соответствии с требованиями Центрального банка. Введенная информация не будет предоставлена третьим лицам за исключением случаев, предусмотренных законодательством РФ. Проведение платежей по банковским картам осуществляется в строгом соответствии с требованиями платежных систем МИР, Visa Int. и MasterCard Europe Sprl.

Оплата наличными

Заказ можно оплатить наличными, по факту получения товара от Курьера или при получении в пункте выдачи заказа СДЭК.
После оформления заказа наш менеджер свяжется с Вами для уточнения деталей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector