Sheloil.ru

Шелл Оил
10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ПРОВЕРКА И РЕГУЛИРОВКА МОМЕНТА ВПРЫСКА ТОПЛИВА

ПРОВЕРКА И РЕГУЛИРОВКА МОМЕНТА ВПРЫСКА ТОПЛИВА

Проверка
1. Откройте капот двигателя.
2. Снимите крышку (1) и установите шестерню G1.
3. Проворачивайте коленвал по часовой стрелке
(нормальное вращение) с помощью шестерни G1
до тех пор, пока желтая метка на шкиве коленва-
ла не дойдет до верха. Затем установите цилиндр
№ 1 в верхнюю мертвую точку с помощью стопо-
ра момента впрыска (2).
: Снимите крышку головки и убедитесь в том,
что коромысло цилиндра № 1 перемещает-
ся на величину клапанного зазора. Если ко-
ромысло не перемещается, то это значит, что
цилиндр № 1 еще не достиг верхней мерт-
вой точки. В таком случае проверните колен-
вал еще на один оборот.
: Глубина нажатия стопора момента впрыска:
8 мм
: Если стопор не вставляется, то при помощи
шестерни G1 немного проверните коленвал
назад и вперед.

: Если затруднительно произвести данную провер-
ку с помощью стопора момента впрыска, уста-
новленного на двигателе, то вместо него можно
использовать металлический штифт G2 в сборе.
4. Снимите пробку (3) ТНВД.
5. Переверните обратной стороной и вставьте сто-
пор момента впрыска (4) ТНВД, при этом убеди-
тесь, что выступ b внутри насоса совместился с
прорезью стопора.
: Если стопор момента впрыска (4) проталки-
вается легко, то момент впрыска установлен
правильно.
: Если стопор момента впрыска (4) проталки-
вается с трудом, то момент впрыска установ-
лен неправильно и необходимо провести его
регулировку.
: Если при установке на двигатель трудно вста-
вить стопор момента впрыска (4) на глубину
проталкивания, то необходимо воспользо-
ваться металлическим штифтом G3 в сборе.
6. После проведения проверки отсоедините изме-
рительные приборы и убедитесь в том, что ма-
шина вновь находится в нормальном рабочем со-
стоянии.
Зажимной болт крышки головки цилиндра:
2,45 ± 0,45 кгм
< Не забудьте установить в исходное положе-
ние стопор момента впрыска ведущей шес-
терни (2) и стопор момента впрыска ТНВД
(4).
: В случае проведения дальнейшей регулиров-
ки оставьте на месте шестерню G1 и стопор
момента впрыска (2).

Регулировка
: Если установлен неправильный момент впрыс-
ка, отрегулируйте его следующим образом.
1. Убедитесь в том, что момент впрыска топлива
ведущей шестерни зафиксирован стопором мо-
мента впрыска (2) ведущей шестерни.
: Если по завершении проверки стопор момен-
та впрыска был извлечен, то его необходимо
вновь вставить, следуя приведенным выше
указаниям.

2. Снимите топливный насос высокого давления.
: Более подробно о снятии ТНВД см. раздел
ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕ-
НИЯ В СБОРЕ в главе РАЗБОРКА И СБОР-
КА.
3. Переверните обратной стороной и вставьте сто-
пор момента впрыска (4) ТНВД, затем, повора-
чивая вал, совместите выступ b внутри насоса с
прорезью стопора.
: После установки момента впрыска топлива
зафиксируйте его пробкой (3).

4. Установите топливный насос высокого давления.
: Более подробно об установке насоса см. раз-
дел, указанный в пункте 2 выше.
5. После проведения проверки отсоедините изме-
рительные приборы и убедитесь в том, что ма-
шина вновь находится в нормальном рабочем со-
стоянии.
< Прежде чем запустить двигатель, убедитесь в
том, что стопор момента впрыска ведущей
шестерни (2) и стопор момента впрыска ТНВД
(4) установлены в исходное положение.

Avto-Science.ru

Датчик фаз — ставить или не ставить? Как правильно выбрать фазу впрыска?

Наверно все знают очередность открытия форсунок в различных видах впрыска, если не все — вот картинки для двигателя с порядком работы цилиндров 1-3-4-2 (ВАЗ) на различных типах впрыска реализуемых системами Январь-5.

Итак поясню подробнее, фазированный впрыск подразумевает наличие на двигателе специального датчика фаз, установленного на впускном распределительном валу, по этому датчику система определяет фазу впуска 1 цилиндра. При фазированном впрыске форсунка открывается 1 раз за 2 оборота (1 раз за цикл в 4-х тактном двигателе). Фазированный впрыск штатно реализован на всех двигателях 2112, кроме самых старых систем (где в ГБЦ не предусмотрено место под ДФ). При попарно параллельном впрыске форсунки открываются 2 раза за цикл — таким образом всем цилиндрам обеспечиваются более менее равные условия, без применения датчика фаз. При отказе ДФ система также переходит в попарно параллельный режим. Ранее в таком режиме работали двигатели 2111 под нормы Евро-2. Одновременный впрыск не обеспечивает даже ,более менее равных условий сгорания топлива в цилиндрах, так что его рассматривать не будем вообще, это удел примитивных систем управления из прошлых веков, он приводится только для примера. Так же для примера скажу, что одновременный впрыск реализовывался на двигателях 2111 с эбу Я5.1.1-71 под нормы Россия-83.

Вернемся к нашим баранам — а именно преимуществам фазированного впрыска:

1) Выше точность дозирования топлива на ХХ и низких нагрузках в случае применения форсунок с большой производительностью.

Читайте так же:
Кризе автоматические регулировки в радиоприемниках

2) Отсутствует 2-й «лаг» (достаточно скользкий участок времени переходных процессов открытия и закрытия форсунки, зависящий от характеристик форсунки и напряжения бортсети в автомобиле, которое может быть довольно нестабильным в процессе эксплуатации). Кроме того это несколько увеличивает диапазон регулирования при выходе форсунок на большие времена впрыска (80% открытия и более).

3) Селекция детонации ведется поцилиндрово а не попарно. В принципе двигатели не идеальны, возможно небольшое различие в камерах сгорания, вызывающее одиночные детонационные стуки в одном из цилиндров при работе на достаточно ранних углах. В этом случае без ДФ отскок по детонации будет распространятся сразу на 2 цилиндра, что приведет к некоторой потере момента двигателем.

4) Возможность задать момент открытия форсунки четко связанный с рабочими процессами в двигателе.

Подробнее остановимся на 4-м пункте, что же такое фаза впрыска и как она влияет. Для ответа следует немножко ознакомится с теорией двигателя. Наверно все знают, что на режимах частичных нагрузок, особенно в зонах малых дросселей, предел обеднения смеси фактически определяется пределом ее воспламеняемости. Если мы будем обеднять смесь дальше — возникнут пропуски в работе двигателя, провалы и рывки. Для холостого хода таким пределом является порог, когда обороты двигателя в результате пропусков будут дестабилизироватся. Но как не странно двигатель работающий в фазированном режиме допускает гораздо более бедные смеси на режимах как низких нагрузок так и хх. В принципе это несложно объяснить. Впускной клапан обычно открывается с некоторым опережением ВМТ а выпускной закрывается с запаздыванием от ВМТ, это состояние называется перекрытием (overlap). Мы возьмем для примера попарно параллельный режим, — часть топлива в любом случае попадает на закрытый впускной клапан, некоторые фракции испаряются некоторые находится в виде взвеси. Если нагрузка не велика — в ресивере как правило давление небольшое (20-40kpa), а в цилиндре в конце такта выпуска давление все еще может сохранятся достаточно высоким. В этом случае при открытии впускного клапана возникает мощный обратный выброс, топливовоздушная смесь которая находилась перед клапаном выбрасывается в ресивер, в результате этого отдельные фракции топлива могут конденсироваться на стенках ресивера и вовлекаться в процесс сгорания гораздо позднее, чем это нужно. Еще одна аномальная ситуация может возникать в режимах где перекрытие обеспечивает продувку камеры. В этом случае часть концентрированной топливовоздушной смеси находящейся перед впускным клапаном может пролететь в выпуск в несгоревшем виде, что ведет к росту CH и расхода топлива. Все это возможно не так важно если вы пытаетесь получить от двигателя максимальную отдачу, но для гражданского двигателя очень желательно еще обеспечить минимальный эксплуатационный расход топлива.

Проанализировав сказанное несложно сформулировать критерии выбора «фазы впрыска», исключающей описанные нежелательные эффекты:

1) На низких оборотах и нагрузках оптимальный момент открытия форсунки должен совпадать с закрытием выпускного клапана (либо чуть чуть раньше за счет ее лага и скорости движения воздуха)!

2) Если время впрыска больше фазы впуска момент открытия надо сдвигать раньше от прежней точки с таким расчетом, чтоб форсунка закрылась чуть раньше, чем закроется впускной клапан.

Очевидно, что просто установка датчика фаз дает не много преимуществ, но если поработать с фазой впрыска на конкретных распределительных валах и правильно выбрать составы на низких нагрузках — можно получить серьезную экономию топлива. Поэтому я для себя решил — датчик фаз обязательно должен быть если машина используется для езды по городу. Для многих тюнеров препятствием установки ДФ является отсутствие пластинки маркера ДФ на регулируемом шкиве впускного вала, эта проблема решается элементарно — просто переставьте пластинку с стандартного шкива и закрепите винтами М4.

В настоящий момент существуют всего 2 программы способных адекватно настроить фазу впрыска, путем обработки логов это может сделать программа injector (с) Andy Frost, а в автоматическом режиме, в реальном времени — ПАК «Матрица» (c) emmibox.

Работа системы впрыска топлива Ваз 2170 Приора

Расчёт и настройка фазы впрыска по логам Atomic Tune для ВАЗ 2113, 2114, 2115

Поделюсь своими новыми идеями и разработками по настройке фазы впрыска. Фаза впрыска калибровка очень интересная и до сих пор постоянно будоражит умы чип-тюнеров. Лично я начал её изучать с лета 2014 года. Вот только сейчас начал понимать, как она работает, и не факт, что я тут написал работает 100%. Это мои личные рассуждения и эксперименты.

Для тех, кто читает меня в первый раз, поясню фаза впрыска — это калибровка в прошивке, которая определяет момент открытия форсунки по углу поворота коленчатого вала (ПКВ). Т.е. калибровка отвечает на вопрос — когда прыснуть бензин? С помощью датчика фаз на распредвалу и идёт впрыск в нужный момент времени.

Читайте так же:
Регулировка комбайна ск 5 под подсолнух

Настройка фазы впрыска с помощью программы Injector. Фаза, рассчитанная с помощью этой программы, действительно показывает хорошие результаты, машина начинает быстрее разгоняться. Я специально однажды выезжал на свой полигон, когда никого не было на дороге и делал замеры по времени, с помощью логов. Откатанная фаза показала лучший результат, я был доволен!

Но вот недавно, я решил заморочиться и самостоятельно научиться рассчитывать фазу впрыска. Думал я думал, и кое-что придумал! Для чего вообще нужно рассчитывать фазу впрыска спросите вы! Итак хорошо живётся и без этой фазы. Ответ простой — чтобы лить бензин вовремя, не рано, не поздно, в открытый клапан, закрытый клапан. Лить туда, куда мы захотим. Но для этого надо сделать несложные расчёты.

Итак, дан мотор с определённым распредвалом, у которого есть своя фаза впуска, перекрытие клапанов. Возьмём наш любимый распредвал Нуждин 10.93. Его фаза впуска равна 282гр. Задача — рассчитать фазу впрыска в прошивке. Фаза впрыска в прошивке выглядит к примеру, вот так:

Расчёт и настройка фазы впрыска по логам Atomic Tune для ВАЗ 2113, 2114, 2115

1:994

Фаза впрыска в программе CTP 3.21 в 3d виде

Для расчёта фазы впрыска я использую время впрыска

. Ведь время впрыска — это уже окончательное значение, рассчитанное ЭБУ. Уже всё известно, форсунка делает пшик-пшик-пшик, нам надо успеть чтобы эта порция бензина, перемешанная с воздухом, успела попасть куда надо, например, в открытый клапан прямо в камеру сгорания! Чем быстрее крутится мотор, тем меньше времени у нас есть на впрыск, поэтому без расчётов никуда, итак, собственно мои расчёты.
1:1884
Дано:

обороты мотора = 1000об/мин фаза впуска распредвала = 282гр (
градусы задаются по коленвалу, по распредвалу будет 141гр
) время впрыска, рассчитанное ЭБУ = 4м/сек
Найти:
время открытого клапана в м/сек, время открытого клапана в градусах.
1:2323
Моё решение:

1. (1000об/мин) / 60 = 16.666 об/сек коленвала (скорость вращения коленвала) 3. ((1000об/мин) / 60)*360гр = 6000гр/сек (скорость вращения коленвала в градусах на сек) 4. ((((1000об/мин) / 60))*360гр)/1000 = 6гр/м/сек (скорость вращения коленвала в градусах на м/сек)
1:447
Итак, при оборотах мотора 1000 об/мин в 1м/сек наш коленвал, без разницы какой, успеет повернуться на 6гр. Берём нашу фазу впуска распредвала — 282гр (расстояние) и делим её на (скорость) 6гр/м/сек, получаем значение времени, за которое пройдёт фаза впуска распредвала 282гр — 47 м/сек. Таким образом, у нас есть время — целых 47 м/сек (клапан открыт на 47 м/сек), чтобы прыснуть форсункой бензин, которая открыта по условиям задачи всего на 4 м/сек! У нас есть целых 43 м/сек запаса по времени! Если перевести данное время впрыска в градусы, то получим: время впрыска 4м/сек * 6гр/м/сек = 24гр. Этот сектор 24гр из возможного сектора 282гр! Задача решена, рассмотрим следующий случай.

Таким же образом можно сделать расчёт для 7500об/мин и времени впрыска 17м/сек: (((((7500

/60)))*360)/1000)*
17
=764гр!
1:1834
И из этого следует вывод. На холостых мы могли лить хоть куда, нам хватало сектора в 24гр при времени впрыска 4м/сек (на холостых вообще время впрыска 1-2м/сек), а тут на высоких оборотах нам уже не хватает времени, мотор крутится очень быстро. Чтобы успеть залить всю порцию бензина, нам нужно, чтобы фаза открытия клапана была не меньше 764гр. А у нас только 282гр дано, поэтому, на верхах форсунка вообще закрываться не должна и должна распылять бензин без остановки. Поэтому есть смысл ставить высокопроизводительные форсунки и насос, чтобы точно успевать залить всю порцию топлива в отрытый клапан, а это экономия и мощь!

Если взять народный, пацанский валик Нуждин 10.93, то фаза в открытый клапан для прошивки будет такая: 360гр-34гр=326гр. 360гр — ВМТ выпуска/впуска, 34гр — начало открытия впускного клапана до ВМТ.

Придумал я этот расчёт и сделал себе еще одну задачу! Ну зачем я это сделал?! Вот не спится мне ночью и всё! Все нормальные люди спят, а мне на ум приходят идеи, как улучшить прошивку! Надо же сделать расчёт для всех точек, которые есть в калибровке фаза впрыска, а их всего 256!

Я очень не люблю делать однотипные операции вручную, и тем более, когда их много. Всё что в моих силах, я стараюсь автоматизировать! Тем более я бываю ленивый, поэтому решил написать программу, которая сделает все муторные расчёты за меня и без ошибок, да еще и быстро! Моя программа рассчитывает фазу впрыска по логам формата ICD, снятым программой Atomic Tune, во время движения автомобиля. С помощью приведённой выше формулы, программа рассчитывает фазу впрыска во всех точках прошивки, ну если конечно автомобиль во время снятия лога побывал в этих точках! В логах программы Atomic Tune есть интересующие нас параметры для работы формулы. 1. Цикловое наполнение (мг/цикл) 2. Время впрыска (м/сек) 3. Обороты мотора (об/мин) В программе можно выбирать куда лить бензин: 1. В открытый впускной клапан в начало перекрытия, когда только начинается впуск и открывается перекрытие впускного и выпускного клапана. 2. В открытый клапан в конец перекрытия, когда выпускной клапан полностью закрыт. 3. В закрытый впускной клапан за 60гр до начала впуска. Также, в программе задаётся лаг форсунки в м/сек и параметры распредвала. Лаг — это время в м/сек, на которое форсунка запаздывает с открытием, его нужно тоже учитывать в расчётах.

Читайте так же:
Регулировка редуктора томасетто на ланосе


2:504

Работа программы. Открываем в ней лог формата ICD, рассчитываем фазу впрыска для определённого распредвала и потом редактируем свою прошивку

А теперь, как на практике рассчитать фазу, с помощью этих программ. Едем кататься с ноутбуком, снимаем логи программой Atomic Tune. Дома, в спокойной обстановке, запускаем программку мою, открываем в ней снятый лог, вводим свои параметры распредвала, лага форсунки. Точность по оборотам и наполнению можно не трогать. Чем меньше значение в этих полях настройки точности, тем точнее будет фаза впрыска!

Просто в логе не всегда есть интересующее нас наполнение или обороты. Например, у нас в логе есть обороты 2550, ближайшее табличное значение из прошивки 2520, точность по оборотам задана 50. Если обороты больше на 50 либо меньше на 50 чем табличное значение, то я и буду считать, что наши текущие обороты из лога 2550 будут примерно равны 2520! С наполнением поступаю аналогичным образом. Побалуйтесь этими точностями и увидите в чём суть.

Ну и всё, открыли файл, после открытия заполнится первая табличка сверху. Затем жмём кнопку «Рассчитать фазу впрыска» и программа через время построит готовые значения углов фазы впрыска в точках, в которых побывал автомобиль! Потом открываем прошивку, находим калибровку фаза впрыска, переключаемся в 2d вид:


3:1071

Фаза впрыска в программе CTP 3.21 в 2d виде

Меняем значения в точках, согласно рассчитанным данным. Сохраняем прошивку, распаковываем её программой enigma, чтобы прошивка весила 64кб и прошиваем тачку. Далее выезжаем на свободную дорогу и тестируем автомобиль.

Программа не открывает файл, в имени или пути, к которому содержаться русские буквы! Файл лога переименовываем на англоязычный вариант, например, так: log_22.11.2014.txt.

Данную ошибку надеюсь скоро поборю.
3:1905
Расскажу еще как лучше делать фазу — на холостых льём в закрытый, ближе к подхвату мотора начинаем приближаться к открытому, в подхвате льём в открытый, потом можно лить когда выпускной закрывается и на верхах льём снова на закрытый. По-моему, это лучший вариант, машина тянет отлично!

3:2426 следующая статья:

Чистка инжектора и замена топливного фильтра грубой и тонкой очистки в ВАЗ 2113, 2114, 2115

Было решено поменять топливный фильтр тонкой и грубой очистки (сеточка в бензонасосе), почистить инжектор. Начну

Рейтинг 0.00 [0 Голоса (ов)]
21388

Работа системы впрыска топлива Ваз 2170 Приора

/ VAZ/ vaz-2170/ Электрооборудование/ Электронная система управления двигателем (ЭСУД)/ Работа системы впрыска топлива

Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от ЭБУ. Он отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса — скважность). Для увеличения количества подаваемого топлива ЭБУ увеличивает длительность импульса, а для уменьшения подачи топлива — сокращает.

ЭБУ обладает способностью оценивать результаты своих расчетов и команд, запоминать режимы недавней работы и действовать в соответствии с ними. «Самообучение» или адаптация ЭБУ — непрерывный процесс, но соответствующие настройки сохраняются в оперативной памяти электронного блока и, следовательно, до первого отключения питания ЭБУ.

Топливо подается по одному из двух различных методов: синхронному, т.е. при определенном положении коленчатого вала, или асинхронному, т.е. независимо или без синхронизации с вращением коленчатого вала. Синхронный впрыск топлива — наиболее часто применяемый метод. Асинхронный впрыск топлива используют в основном в режиме пуска двигателя. ЭБУ включает форсунки последовательно. Каждая из форсунок включается через каждые 720° поворота коленчатого вала. Такой метод позволяет более точно дозировать топливо по цилиндрам и понизить уровень токсичности отработавших газов.

Количество подаваемого топлива определяется состоянием двигателя, т.е. режимом его работы. Эти режимы обеспечиваются ЭБУ и описаны ниже.

Когда коленчатый вал двигателя начинает прокручиваться стартером, первый импульс от датчика положения коленчатого вала вызывает импульс от ЭБУ на включение сразу всех форсунок, что позволяет ускорить пуск двигателя.

Первоначальный впрыск топлива происходит каждый раз при пуске двигателя. Длительность импульса впрыска зависит от температуры. На холодном двигателе импульс впрыска более продолжительный для увеличения количества топлива, на прогретом — длительность импульса уменьшается. После первоначального впрыска ЭБУ переключается на соответствующий режим управления форсунками.

Читайте так же:
Регулировка фар lexus rx350

Режим пуска

При включении зажигания ЭБУ включает реле электробензонасоса, который создает давление в магистрали подачи топлива к топливной рампе.

ЭБУ проверяет сигнал от датчика температуры охлаждающей жидкости и определяет необходимое для пуска количество топлива и воздуха.

Когда коленчатый вал двигателя начинает проворачиваться, ЭБУ формирует фазированный импульс включения форсунок, длительность которого зависит от сигналов датчика температуры охлаждающей жидкости. На холодном двигателе длительность импульса больше (для увеличения количества подаваемого топлива), а на прогретом — меньше.

Режим обогащения при ускорении

ЭБУ следит за резкими изменениями положения дроссельной заслонки (по сигналу датчика положения дроссельной заслонки), а также за сигналом датчика массового расхода воздуха и обеспечивает подачу дополнительного количества топлива за счет увеличения длительности импульса впрыска. Режим обогащения при ускорении применяется только для управления топливоподачей в переходных условиях (при перемещении дроссельной заслонки).

Режим отключения подачи топлива при торможении двигателем

При торможении двигателем с включенной передачей и сцеплением ЭБУ может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение и включение подачи топлива в этом режиме происходит при создании определенных условий по температуре охлаждающей жидкости, частоте вращения коленчатого вала, скорости автомобиля и углу открытия дроссельной заслонки.

Компенсация напряжения питания

При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. ЭБУ компенсирует это путем увеличения времени накопления энергии в катушках зажигания и длительности импульса впрыска.

Соответственно при повышении напряжения аккумуляторной батареи (или напряжения в бортовой сети автомобиля) ЭБУ уменьшает время накопления энергии в катушках зажигания и длительность впрыска.

Режим отключения подачи топлива

При остановке двигателя (выключенном зажигании) топливо форсункой не подается, таким образом исключается самопроизвольное воспламенение смеси в перегретом двигателе. Кроме того, импульсы на открытие форсунок не подаются, в случае если ЭБУ не получает «опорные» импульсы от датчика положения коленчатого вала, т.е. это означает, что двигатель не работает.

Подача топлива отключается и при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6200 мин -1, для защиты двигателя от работы на недопустимо высоких оборотах.

Основные аспекты ремонта систем впрыска K и KE-Jetronic

Руководство по регулировке, настройке и ремонту систем впрыска K и KE-Jetronic

Предназначение устройства KE-Jetronic заключается в обеспечении стабильного впрыска топлива. Использование подобных систем началось еще в 70-х годах прошлого века, однако популярность устройств на отечественном рынке возросла не так давно. Подробнее о принципе действия и возможных неисправностях системы вы сможете узнать из этой стать.

Принцип действия системы впрыска топлива

Начнем с принципа функционирования. Как сказано выше, система KE-Jetronic позволяет обеспечить наиболее стабильный впрыск за счет дозаторного управления подачи топлива в непрерывном цикле. Воздушный поток попадает в систему с улицы, проходя через воздушный фильтрующий элемент. Попадая в фильтр, воздух очищается от пыли, после чего направляется в воздушный расходомер. В результате давления производится регулировка объема топливной смеси и ее дозировка.

После этого уже очищенный воздушный поток идет на заслонку дроссельного узла, при этом ее открытие регулируется путем нажатия на педаль газа. Далее воздух поступает во впускные магистрали для разбрызгивания смеси. Что касается непосредственно топлива, то оно передается из бака в двигатель благодаря работающему насосу под давление.

Параметр давления для нормальной работы мотора должен составлять не меньше 1.5 бар. Далее, горючее передается в аккумулятор давления, а отсюда — через фильтрующий компонент на дозатор. Последний, в свою очередь, уже настроен воздушным потоком благодаря корректору.

Руководство по регулировке, настройке и ремонту систем впрыска K и KE-Jetronic

Схема функционирования системы KE-Jetronic

После этого по отдельным магистралям бензин передается на форсунки, при этом дозировка осуществляется дросселем. Замер объема воздушного потока осуществляется благодаря специальному девайсу — расходомеру. Расходомер вместе с дозатором является собой один блок, эта система зовется регулятором состава горючей смеси. Здесь же, внутри конструкции, располагается распределительное устройство — ротаметр. Сам ротаметр может отклоняться под воздействием воздуха, который перемещается по магистралям.

Устройство обладает механической связью и регулируется благодаря рычагам с золотником. Поскольку узел перемещается вверх, он должен пропускать незначительную часть топлива, передающегося через дифференциальные клапаны на форсунки мотора. Последние, в свою очередь, осуществляют передачу готовой смеси на цилиндры. Поскольку температура воздуха снаружи может быть разной, условия функционирования агрегата в целом могут изменяться с учетом этого показателя. Системы KE-Jetronic оснащаются вспомогательным механизмом — регуляторным устройством давления.

Чтобы произвести регулировку оборотов силового агрегата при движении на холостых оборотах, применяется специальный клапан, который, в свою очередь, регулирует положение дросселя. Помимо этого, для обеспечения более стабильного пуска двигателя используется еще одна вспомогательная форсунка, управляющаяся термическим реле. В данном случае продолжительность ее открытого положения полностью зависит от температуры силового агрегата. Когда двигатель запускается, бензин одновременно начинает поступать на все составляющие элементы системы и в конечном итоге он попадает в золотник. Посредством воздействия силы топливо поднимается и попадает в узел, обеспечивающий регулировку.

Читайте так же:
Регулировка ближнего света туарег

Руководство по регулировке, настройке и ремонту систем впрыска K и KE-Jetronic

Составляющие элементы системы

На транспортных средствах с силовыми агрегатами, оборудованными трехкомпонентыми каталитическими нейтрализаторами система может быть дополнена некоторыми вспомогательными элементами.

В частности, речь идет о:

  • контроллере уровня кислорода или лямбда-зонде;
  • управляющим механизмом;
  • специальным дроссельным устройством переменного типа, вместо него может использоваться тактовый клапан;
  • регуляторе положения дросселя.

Помимо этого, в узлы KE-Jetronic могут быть добавлены изменения, касающиеся устройства регулировки качества горючей смеси. В целом узел управляется электроникой, то есть для него предусмотрены отдельные «мозги».

Возможные неисправности и диагностика

Установка узла допускается на многие автомобили, в том числе Volkswagen, Mercedes, Audi 200 и другие модели машин. Поскольку сама по себе система имеет достаточно сложную конструкцию, некоторые автовладельцы периодически сталкиваются с определенными неполадками в ее работе. Иногда ликвидация поломок возможна только путем ремонта, а в некоторых случаях от неисправностей можно избавиться путем настройки узла (автор видео — v_i_t_a_l_y).

Одна из наиболее распространенных поломок — силовой агрегат не запускается или запускается с большим трудом. В этом случае проблема может заключаться в работоспособности нескольких составных элементов устройства, поскольку при запуске мотора работают почти все механизмы. Так как само по себе система сложная, для ее диагностики ремонта нужны квалифицированные спецы, тем более, что для осуществления этой задачи понадобится соответствующее оборудование.

Если запуск ДВС не производится, то в первую очередь нужно обратить внимание на такие элементы:

  • узел питания силового агрегата;
  • устройство для регулировки давления;
  • механизм для регулировки управляющего давления;
  • форсунки впрыска, а также пусковую форсунку;
  • контроллер температуры антифриза;
  • проверить узел регулировки дросселя;
  • также не лишним будет произвести диагностику затяжки форсунок.

Что касается диагностики, то в первую очередь речь идет о системе питания. Этот узел включает в себя топливный бак, магистраль для подачи горючего, бензонасос, аккумуляторное устройство давления, а также фильтрующий элемент. Выход из строя одной из составных частей узла приведет к тому, что запустить мотор будет невозможно или ДВС запустится, но с трудом. Разумеется, необходимо убедиться в том, что в системе есть горючее, для этого демонтируется шланг выходного штуцера. В том случае, если в авто установлен встроенный контроллер давления горючего, то следует произвести диагностику его показателей (автор видео — v_i_t_a_l_y).

В принципе для ремонта любых неисправностей узла с самого начала следует замерить параметр давлений на всех составляющих элементах, не лишним будет произвести диагностику их герметичности. В том случае, если горючее в системе отсутствует, то вероятнее всего, из строя вышел именно насос. Если же топливо в аккумуляторе есть, но давление очень слабое, то нужно произвести диагностику герметичности, а также проверить работоспособность фильтра. Фильтрующий элемент необходимо периодически менять, поскольку сетка забывается достаточно быстро.

Чтобы убедиться в том, что система герметична, понадобится временно увеличить давление. Для выполнения этой задачи потребуется манометр с вентилем, а также патрубки со специальным штуцерами. Манометр монтируется в разрыв узла от нижних камер непосредственно до форсунок. После этого заводится мотор и глушится он только через полчаса, а затем производится замер давления — этот показатель должен быть не менее 2.5 кг/см2. В том случае, если полученные показания будут другими, понадобится произвести диагностику реле, а также регулятора.

Если мотор в принципе не заводится, то необходимо будет принудительно активировать работу насоса, чтобы сделать это, нужно замкнуть контакты реле. При этом сам манометр необходимо подключить в разрыв системы перед регулятором. Полученные параметры должны составлять от 5.3 до 5.7 кг/см2.

В том случае, если показатели будут более низкими, то нужно проверить герметичность, а если узел нормально герметичен, то производится диагностика магистрали. Вполне возможно, что топливная магистраль просто забилась, но не лишним будет опять же проверить аккумулятор, бензонасос и фильтрующий компонент. Так как эти элементы системы по своей конструкции являются не разборными, в случае их выхода из строя решить проблему поможет только замена.

Еще один тип неисправности — мотор работает нестабильно или не запускается на горячую. В этом случае производится диагностика:

  • расходомера;
  • электрогидравлического регулятора, если он есть, если нет — то механического устройства;
  • блока управления.

Недостаток системы — это ее сложность и расход бензина.

Видео «Регулировка системы в домашних условиях»

Подробнее о том, как производится регулировка и как правильно настраивать узел, вы сможете узнать из видео ниже (автор — v_i_t_a_l_y).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector