Sheloil.ru

Шелл Оил
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка скорости вращения электромотора

Регулировка скорости вращения электромотора

механики подтвердили что да можно в 2 раза увеличить без проблем.
Да?

Двигатель 3000 на 100 Гц будет около 6000 об/мин. Болгарка столько крутит. Подшипники сколько проживут? А редуктор (не напрямую ведь двигатель подключен)?

Возникла необходимость увеличить производительность (скорость) конвейера, механики подтвердили что да можно в 2 раза увеличить без проблем.

Я думаю механики имели ввиду, что можно без проблем увеличить скорость именно конвейера, а не электродвигателя (во всяком случае за ЭД у нас отвечают электрики, а вот за конвейер уже механики). Конвейер то может быть и можно, а вот по двигателю читайте выше.

Мужики огромное спасибою В принципе понятно. Двигатель 3000 об/мин.
http://s5.postimage.org/u5o64e8kz/20150117_131531.jpg (http://postimage.org/image/u5o64e8kz/)
Механики естественно касательно конвейера дали добро на разгон только мехчасть. Крутануть конечно же попробуем. Всеравно редуктор спалим скорей всего, потому что редуктор червячный и сильно сомневаюсь что очень выдюжит повышенные обороты. Ну то не моя забота, просто главный механик решил выпендрится перед руководством, а потом всё началось, начали нас напрягать. Что либо объяснять бесполезно.

Еще такой вопрос.
Привезли машину Б/У, ну там куча всяких проблем, в том числе и по мехчасти.
В общем нужно запускать двигатель в режиме тяжелого пуска. Ток при запуске прыгает до 90А.
Двигатель 3кВт. После разгона двигатель выходит на свой режим и нормально крутится.
Поставили задачу переделать всю автоматику и если с контроллерами и прочьими заумностями проблем нет то с мотором есть.
На двигатель нацепили ПЧВ103-4К0-В. Привод не может раскрутить двигатель в режиме плавного разгона выдает ошибку "превышен предельный крутящий момент" код ошибки 12. Скорость пока не пробовали регулировать.
Как решить проблему?

Что либо объяснять бесполезно.

— а вот интересно . на Чернобыльской АЭС такая же ситуация была? :rolleyes:
Подумай, прежде чем руки запускать в оборудование, дружище, кому будешь объяснять — начальнику или прокурору? — Помощников намотать срок найдёшь легко — помощников смотать . вряд ли.

Крутите на любую частоту и не бойтесь за электричество, все — ОК! Ограничение существует в механической области — это подшипники. До 3000 об/мин нормально работают любые, при 5000 — 6000 оборотах обычные уже конкретно греются и могут клинить, поэтому замена на быстроходные, либо кратковременные выходы на данные скорости. Скорости 3000 — 4000 подсаживают ресурс в длительной переспективе. Да, и осторожнее с торможением — делать плавнее, ставить резисторы..

При тяжелых пусках — делайте разгон более плавным, смотрите (увеличивайте) настройку ограничения по току и по моменту (это разные параметры!) кроме того есть настройка допустимого времени перегрузки до срабатывания защиты. Обязательно точно указывайте параметры двигателя в настройках ПЧ и проводите автонастойку ПЧ на двигатель. Ни двигатель, ни ПЧ не выйдут из строя, возможна лишь тепловая интегральная перегрузка за счет плохого охлаждения и частых старт-стопов.

Векторные режимы — наше все! единственная причина не использовать вектор — это несколько двигателей включенных параллельно на один ПЧ. Есть правда еще одна — это когда производитель ПЧ сильно лукавит указывая наличие "векторного" режима для своих поделок, и называя "векторным" например, подъем момента в низких частотах.

Скорость регулировать нужно.
В том и проблема.
ПЧ — 4кВт двигатель — 3кВт.
С пускателей принципе двигатель запускается в допустимом режиме 7-8 Inom, на автоматическом выключателе стоит отсечка 10-12Inom, на нормальные обороты выходит за максимум 5-6 секунд. Запускается не часто.
Я в инструкции не нашел как регурилировать ток перегруза и время перегруза и ток отсечки.
Правильно ли я понимаю что скорость вращения ротора двигателя можно контролировать только энкодером. У нас есть привода которые могут контролировать скорость вращения ротора без энкодера, наверное не достаточно точно, но могут.

Читайте так же:
Регулярные и хаотические автоколебания синхронизация и влияние флуктуаций

1. Для работы в "тяжелых" условиях ПЧ должен быть "больше" двигателя на следующий типоразмер(по мощности) , т.е для двигателя 3квт при тяжелых условиях надо брать ПЧ на 7.5 кВт. При этом надо настроить параметры двигателя правильно иначе ПЧ может движок "подпалить" , т.к настройки по умолчанию на макс.мощность.
2. Векторный режим для конвейера не нужен.
3. 100гц — крутится без нагрузки мотор будет , но. будет слышно , что ему не очень хорошо при этом . Занимался подобными экспериментами , уже при 80гц на реальной установке начинаются "проскальзывания" и "вибрация" железа электродвигателя . Поэтому 100гц — это так движок в холостую покрутить , посмотреть и. отказаться от этой затеи .

Схема регулятора скорости бесколлекторного двигателя (ESC)

Схема условно разделена на две части: левая — микроконтроллер с логикой, правая — силовая часть. Силовую часть можно модифицировать для работы с двигателями другой мощности или с другим питающим напряжением.

Контроллер — ATMEGA168. Гурманы могут сказать, что хватило бы и ATMEGA88, а AT90PWM3 — это было бы «вааще по феншую». Первый регулятор я как раз делал «по феншую». Если у Вас есть возможность применять AT90PWM3 — это будет наиболее подходящий выбор. Но для моих задумок решительно не хватало 8 килобайт памяти. Поэтому я применил микроконтроллер ATMEGA168.

Эта схема задумывалась как испытательный стенд. На котором предполагалось создать универсальный настраиваемый регулятор для работы с различными «калибрами» бесколлекторных двигателей: как с датчиками, так и без датчиков положения. В этой статье я опишу схему и принцип работы прошивки регулятора для управления бесколлекторными двигателями с датчиками Холла и без датчиков.

Схема регулятора

Brushless ESC

Питание

ШИМ и сигналы для ключей

Обратная связь (контроль напряжения фаз двигателя)

Датчики Холла

Измерения аналоговых сигналов

На вход ADC3(PC3) поступает аналоговый сигнал от датчика тока. Датчик тока ACS756SA. Это датчик тока на основе эффекта Холла. Преимущество этого датчика в том, что он не использует шунт, а значит, имеет внутреннее сопротивление близкое к нулю, поэтому на нем не происходит тепловыделения. Кроме того, выход датчика аналоговый в пределах 5В, поэтому без каких-либо преобразований подается на вход АЦП микроконтроллера, что упрощает схему. Если потребуется датчик с большим диапазоном измерения тока, Вы просто заменяете существующий датчик новым, абсолютно не изменяя схему.

Если Вам хочется использовать шунт с последующей схемой усиления, согласования — пожалуйста.

Задающие сигналы

Кроме того, есть вход RC сигнала, который повсеместно используется в дистанционно управляемых моделях. Выбор управляющего входа и его калибровка выполняется в программных настройках регулятора.

UART интерфейс

Прочее

Светодиод, сигнализирующий о состоянии регулятора, подключен к выводу PD4.

Силовая часть

Ключи нужно выбирать в зависимости от максимального тока и напряжения питания двигателя (выбору ключей и драйверов будет посвящена отдельная статья). На схеме обозначены IR540, в реальности использовались K3069. K3069 рассчитаны на напряжение 60В и ток 75А. Это явный перебор, но мне они достались даром в большом количестве (желаю и Вам такого счастья).

Конденсатор С19 включается параллельно питающей батареи. Чем больше его емкость — тем лучше. Этот конденсатор защищает батарею от бросков тока и ключи от значительной просадки напряжения. При отсутствии этого конденсатора Вам обеспечены как минимум проблемы с ключами. Если подключать батарею сразу к VD — может проскакивать искра. Искрогасящий резистор R32 используется в момент подключения к питающей батарее. Сразу подключаем «» батареи, затем подаем «+» на контакт Antispark. Ток течет через резистор и плавно заряжает конденсатор С19. Через несколько секунд, подключаем контакт батареи к VD. При питании 12В можно Antispark не делать.

Читайте так же:
Регулировка насоса тнвд bosch

Возможности прошивки

  • возможность управлять двигателями с датчиками и без;
  • для бездатчикового двигателя три вида старта: без определения первоначального положения; с определением первоначального положения; комбинированный;
  • настройка угла опережения фазы для бездатчикового двигателя с шагом 1 градус;
  • возможность использовать один из двух задающих входов: 1-аналоговый, 2-RC;
  • калибровка входных сигналов;
  • реверс двигателя;
  • настройка регулятора по порту UART и получение данных от регулятора во время работы (обороты, ток, напряжение батареи);
  • частота ШИМ 16, 32 КГц.
  • настройка уровня ШИМ сигнала для старта двигателя;
  • контроль напряжения батарей. Два порога: ограничение и отсечка. При снижении напряжения батареи до порога ограничения обороты двигателя понижаются. При снижении ниже порога отсечки происходит полная остановка;
  • контроль тока двигателя. Два порога: ограничение и отсечка;
  • настраиваемый демпфер задающего сигнала;
  • настройка Dead time для ключей

Работа регулятора

Включение

После включения двигатель издает 1 короткий сигнал (если звук не отключен), включается и постоянно светится светодиод. Регулятор готов к работе.

Для запуска двигателя следует увеличивать величину задающего сигнала. В случае использования задающего потенциометра, запуск двигателя начнется при достижении задающего напряжения уровня примерно 0.14 В. При необходимости можно выполнить калибровку входного сигнала, что позволяет использовать раные диапазоны управляющих напряжений. По умолчанию настроен демпфер задающего сигнала. При резком скачке задающего сигнала обороты двигателя будут расти плавно. Демпфер имеет несимметричную характеристику. Сброс оборотов происходит без задержки. При необходимости демпфер можно настроить или вовсе отключить.

Запуск

При опрокидывании двигателя или механическом заклинивании ротора срабатывает защита, и регулятор пытается перезапустить двигатель.

Запуск двигателя с датчиками Холла также выполняется с применением настроек для старта двигателя. Т.е. если для запуска двигателя с датчиками дать полный газ, то регулятор подаст напряжение, которое указано в настройках для старта. И только после того, как двигатель начнет вращаться, будет подано полное напряжение. Это несколько нестандартно для двигателя с датчиками, поскольку такие двигатели в основном применяются как тяговые, а в данном случае достичь максимального крутящего момента на старте, возможно, будет сложно. Тем не менее, в данном регуляторе присутствует такая особенность, которая защищает двигатель и регулятор от выхода со строя при механическом заклинивании двигателя.

Во время работы регулятор выдает данные об оборотах двигателя, токе, напряжении батарей через порт UART в формате:

Данные выдаются с периодичностью примерно 1 секунда. Скорость передачи по порту 9600.

Настройка регулятора

Переход регулятора в режим настройки происходит при включении регулятора, когда задающий сигнал потенциометра больше нуля. Т.е. Для перевода регулятора в режим настройки следует повернуть ручку задающего потенциометра, после чего включить регулятор. В терминале появится приглашение в виде символа «>«. После чего можно вводить команды.

Регулятор воспринимает следующие команды (в разных версиях прошивки набор настроек и команд может отличаться):

h — вывод списка команд; ? — вывод настроек; c — калибровка задающего сигнала; d — сброс настроек к заводским настройкам.

команда «?» выводит в терминал список всех доступных настроек и их значение. Например: Изменить нужную настройку можно командой следующего формата:

<настройка>=<значение>

pwm.start=15

Если команда была дана корректно, настройка будет применена и сохранена. Проверить текущие настройки после их изменения можно командой «?«.

Измерения аналоговых сигналов (напряжение, ток) выполняются с помощью АЦП микроконтроллера. АЦП работает в 8-ми битном режиме. Точность измерения занижена намеренно для обеспечения приемлемой скорости преобразования аналогового сигнала. Соответственно, все аналоговые величины регулятор выдает в виде 8-ми битного числа, т.е. от 0 до 255.

Список настроек, их описание:

ПараметрОписаниеЗначение
motor.typeТип мотора0-Sensorless; 1-Sensored
motor.magnetsКол.во магнитов в роторе двигателя. Изпользуется только для расчета оборотов двигателя.0..255, шт.
motor.angleУгол опережения фазы. Используется только для Sensorless двигателей.0..30, градусов
motor.start.typeТип старта. Используется только для Sensorless двигателей.0-без определения положения ротора; 1-с определением положения ротора; 2-комбинированный;
motor.start.timeВремя старта.0..255, мс
pwmЧастота PWM16, 32, КГц
pwm.startЗначение PWM (%) для старта двигателя.0..50 %
pwm.minЗначение минимального значения PWM (%), при котором двигатель вращается.0..30 %
voltage.limitНапряжение батареи, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC.0..255*
voltage.cutoffНапряжение батареи, при котором следует выключать двигатель. Указывается в показаниях ADC.0..255*
current.limitТок, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC.0..255**
current.cutoffТок, при котором следует выключать двигатель. Указывается в показаниях ADC.0..255**
system.soundВключить/выключить звуковой сигнал, издаваемый двигателем0-выключен; 1-включен;
system.inputЗадающий сигнал0-потенциометр; 1-RC сигнал;
system.damperДемпфирование входного сигнала0..255, условные единицы
system.deadtimeЗначение Dead Time для ключей в микросекундах0..2, мкс
Читайте так же:
Карбюратор пирбург 2е2 его регулировки

* — числовое значение 8-ми битного аналого цифрового преобразователя. Рассчитывается по формуле: ADC = (U*R6/(R5+R6))*255/5 Где: U — напряжение в Вольтах; R5, R6 — сопротивление резисторов делителя в Омах.

** — числовое значение 8-ми битного аналого цифрового преобразователя. Рассчитывается по формуле: ADC = U*255/5 Где: U — напряжение датчика тока в Вольтах, соответствующее требуемому току.

Фьюзы микроконтроллера должны быть выставлены на работу с внешним кварцем. Строка для программирования фьюзов с помощью AVRDUDE:

Всё про регулировку оборотов двигателя от стиральной машины

Стиральным машинам, как впрочем и любым бытовым приборам, свойственно ломаться. И хорошо, если случившуюся поломку можно исправить малыми финансовыми затратами. Но увы, бывают случаи, когда чинить стиральную машину нет никакого смысла, так как проще и дешевле купить новый агрегат. Но что делать со старой? Тем более, если ее двигатель находится в отличном состоянии и продолжает исправно работать.

Реле регулировки оборотов

Реле регулировки оборотов

Нужные ненужные вещи

Многие просто вывезут машину на свалку и забудут о ней. Но это не решение вопроса для рачительного и умелого хозяина. Вы были бы удивлены, узнав, куда и какие детали стиральной машины можно было бы приспособить в домашнем хозяйстве. И в нашей статье мы расскажем о наиболее ценной детали данного агрегата – об исправном двигателе стиральной машинки-автомат.

Наиболее подходящий вариант использования электродвигателя – это его подключение к другому устройству. Например, электроточильному станку (или любому другому). Но для этого, прежде всего, нужно подключить мотор к бытовой сети 220 В и отрегулировать количество его оборотов.

oborotov_dvigatelya_ot_stiralnoj_mashiny_7

Подключение к 220 Вольт

Для того чтобы подключить электродвигатель к домашней электросети, понадобится мультиметр.

С его помощью прозваниваем выходные провода, идущие от электромотора. Цель данной операции: обнаружить среди проводов (от 2 до 4 штук) два с наибольшим сопротивлением (порядка 12 Ом). Соответственно, если проводов всего 2, то задача упрощается до минимума. На данный момент мы имеем на руках два силовых провода от катушки возбуждения двигателя стиральной машины.

oborotov_dvigatelya_ot_stiralnoj_mashiny_6

Далее выявляем провода от коллектора и щеток двигателя. Их тоже два, так что перепутать их невозможно.

Третья необходимая нам пара проводов принадлежит таходатчику. В основном они прикреплены на корпусе двигателя. В противном случае придется его (мотор) частично разобрать.

Один из коллекторных проводов соединяем с катушечным. А оставшуюся пару (коллектор — катушка) подключаем удобным способом к сети 220 Вольт. Проводим пробный запуск.

Если вы не знаете, что означают и как выглядят названные нами детали: катушка возбуждения, коллектор, таходатчик и так далее, лучше отложите чтение данной статьи до ознакомления с устройством и принципом работы коллекторного двигателя стиральной машины-автомат.

oborotov_dvigatelya_ot_stiralnoj_mashiny_5

Регулировка оборотов двигателя от стиральной машины-автомат

Скорость вращения двигателя играет важную роль в его дальнейшем применении. Существует большое количество схем и печатных плат, на основе которых производится подключение электродвигателей стиральных машин. И еще большее количество плат регулировки оборотов двигателя от стиральной машины самодельного изготовления, которые порой намного эффективнее и качественнее, чем их фабричные аналоги. Рассмотрим две схемы регулировки оборотов двигателя от стиральной машины.

Читайте так же:
Регулировка развал схождения на поло седан

oborotov_dvigatelya_ot_stiralnoj_mashiny_4

Регулятор напряжения

Самым простым и доступным регулятором количества оборотов электромотора стиральной машины является любое устройство, предназначенное для подобных действий. Это может быть:

  • Димер;
  • Гашетка электродрели;
  • Поворотное колесо и т.д., взятое от любого бытового прибора или приобретенное в магазине.

Смысл операции по регулировке оборотов прост и заключается в уменьшении или увеличении поступающего напряжения на двигатель из сети 220 Вольт. То есть поворачивая колесо регулировки, мы регулируем напряжение, а следовательно, и задаем скорость вращения. Схема данного подключения выглядит следующим образом:

  • Провод от катушки (1) соединяем с кабелем, идущим от якоря.
  • 2-катушечный провод направляем на сеть.

oborotov_dvigatelya_ot_stiralnoj_mashiny_4

  • Оставшийся кабель (2) якоря замыкаем на димер.
  • Второй выход димера – на сеть.
  • Производим пробный запуск электромотора и работу регулятора.

Если вы ничего не перепутали, двигатель будет послушно изменять количество своих оборотов. Но появится одна большая проблема. При касании к вращающейся оси двигателя он будет останавливаться. То есть при малейшем стороннем воздействии происходит потеря мощности, независимо от подаваемого напряжения. По сути, мы имеем на руках работающий движок без каких-либо полезных функций.

Подключение через плату (микросхему)

Наша схема регулировки оборотов изначально не была самой элементарной. И именно для этого мы использовали в ней тахогенератор. Теперь пришло время заняться им. Ведь с помощью таходатчика мы сможем регулировать обороты двигателя стиральной машины без какой-либо потери его мощности, то есть превратив электромотор в реально функциональное устройство.

В нашем случае таходатчик является посредником между двигателем и микросхемой, которая выглядит следующим образом. Данная схема создана на основе заводской платы с маркировкой TDA 1085. Приобрести ее не составит никакого труда в магазинах радиотехники.

Вполне уместным будет вопрос — что изменится в работе двигателя после его подключения через микросхему? Очень многое.

Если при обычном подключении, описанном нами выше, запускать двигатель в работу приходилось движением руки. То теперь это возможно простым поворотом тумблера. При попытке воздействия на вращающийся шкив двигатель не останавливается полностью, а сбрасывает обороты буквально на долю секунды, после чего возвращается к заданной мощности, но уже с учетом возросшей нагрузки.

То есть встроенная нами микросхема, получив сигнал от таходатчика об уменьшении количества оборотов из-за возросшей нагрузки, мгновенно реагирует на это и увеличивает мощность, а следовательно, и количество оборотов электромотора.

Частотник или как регулировать скорость вращения электродвигателя.

При управлении различными процессами довольно часто возникает ситуация, когда необходимо управлять скоростью вращения электродвигателя. Например, необходимо уменьшить расход воды в системе водоснабжения за счёт снижения оборотов насоса, или отрегулировать уровень воздухообмена в системе вентиляции, меняя скорость вращения приточного вентилятора.

частотный преобразователь danfos

Регулировка скорости вращения электродвигателя может производиться за счёт изменения частоты и (или) величины управляющего напряжения, а также за счёт управления сдвигом фаз (для трёхфазных двигателей). Это может быть реализовано с использованием различных устройств, наиболее универсальным и многофункциональным из которых является частотный преобразователь. О нём и пойдёт речь в этой статье.

Частотный преобразователь (он же «частотник», он же «инвертор»)

В обиходе частотный преобразователь чаще называют частотником или инвертором.

Как уже было сказано, частотник предназначен для управления скоростью вращения электродвигателя. Это происходит за счёт изменения характеристик питающего напряжения.

Существуют модификации частотников для управления трёхфазными и однофазными двигателями.

Типовая структурная схема управления электродвигателем выглядит так:

На схеме трёхфазное питание подаётся на вход инвертора через автоматический выключатель, выполняющий защитную функцию, и магнитный пускатель (расцепитель), с помощью которого можно разорвать цепь по внешнему сигналу, когда это необходимо.

Читайте так же:
Регулировка рулевой рейки митсубиси паджеро спорт

Частотник преобразует характеристики входного напряжения в соответствии с заданной схемой управления и требуемой частотой электродвигателя, и «выдаёт» на выход три фазы с изменёнными параметрами (частотой, величиной напряжения, сдвигом фаз).

Задание частоты может производится непосредственно с пользовательской панели преобразователя частоты или дистанционно с ПК или пульта оператора.

Для однофазного двигателя структурная схема управления аналогична.

Схема частотного преобразователя

структурно-функциональная схема частотника

Рассмотрим основные структурно-функциональные узлы преобразователя частоты:

Изменение скорости вращения двигателя с помощью частотного преобразователя

  1. Силовая часть — выполняет изменение характеристик входного напряжения для достижения требуемой скорости вращения двигателя.
  2. Управляющий процессор — «мозг» частотника, координирует работу всех остальных узлов. Управляет силовой частью, задавая алгоритм преобразования входного напряжения в выходное.
  3. Интерфейс пользователя — может состоять из кнопок, ручек, цифровых и текстовых табло. Необходим для настройки преобразователя, задания требуемой частоты вращения двигателя и других параметров. На графическом табло отображается текущее состояние частотника (заданная скорость вращения, ток двигателя и др.).
  4. Цифровой интерфейс — аналог интерфейса пользователя. Позволяет подключиться к преобразователю дистанционно, используя один из поддерживаемых протоколов, и управлять, настраивать, анализировать состояние частотника с удалённого ПК (пульта оператора).
  5. Дискретные входы — могут быть задействованы для управления частотником с помощью внешних дискретных сигналов. Например, можно назначить на каждый дискретный вход определённую частоту, с которой должен крутиться двигатель. Допустим частотник имеет пять входов. Настраиваем на 1 вход 10 Гц, 2 — 20 Гц, …, 5 — 50 Гц, и подключаем к каждому входу кнопку — тогда при нажатии на соответствующую кнопку преобразователь будет принимать соответствующую частоту в качестве заданной.
  6. Аналоговые входы — могут применяться для управления частотой с помощью внешнего аналогового унифицированного сигнала (4-20 мА или 0-10 В). Допустим, в системе вентиляции необходимо менять частоту вентилятора в зависимости от температуры воздуха. Для этого можно применить датчик температуры с аналоговым сигналом на выходе, подключив его к соответствующему входу частотника, и настроить преобразователь на управление от аналогового входа. Тогда при увеличении температуры, будет происходить увеличение скорости вращения вентилятора.
  7. Дискретные выходы — могут использоваться для регистрации различных событий (информационных или аварийных). Например можно настроить, чтобы выход срабатывал, когда преобразователь достиг заданной частоты, произошёл перегрев двигателя и т.д.
  8. Аналоговые выходы — используются для передачи другим устройствам текущих непрерывных параметров частотника (частоты вращения, тока, теплового состояния и др.).

Настройка частотного преобразователя

Для того, чтобы начать использование частотного преобразователя, его необходимо настроить, — то есть задать минимально-необходимый набор параметров:

настройка частотника

Частотник: выбор канала задания частоты

  1. Параметры двигателя — номинальные значение тока, напряжения, мощности, максимальная и минимальная частоты вращения и т.д. Обычно эти параметры указаны на шильдике двигателя или в руководстве по эксплуатации.
  2. Канал задания — способ задания необходимой частоты вращения. Как уже говорилось выше, частоту можно задать различными способами: с помощью интерфейса пользователя, цифрового интерфейса, дискретных или аналоговых входов. Эта настройка даёт частотнику понятие о том, откуда конкретно брать задание. Канал задания может меняться в процессе работы преобразователя, например можно настроить один из дискретных входов на изменение канала задания, и с помощью внешнего переключателя, подключенного к указанному входу, менять канал задания.
  3. Канал управления — определяет откуда осуществляется запуск/остановка (и некоторые другие управляющие функции) преобразователя. В качестве канала управления может быть задан интерфейс пользователя, цифровой интерфейс или дискретные входы. Канал управления, так же как и канал задания, может быть изменён в процессе работы преобразователя.
  4. Схема преобразования — алгоритм управления питающим напряжением электродвигателя. Эту настройку не рекомендуется менять неопытным пользователям, лучше оставить её по-умолчанию.
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector