Sheloil.ru

Шелл Оил
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Регулирование — напряжение — генератор — постоянный ток

Регулирование напряжения генераторов постоянного тока осуществляется с помощью электромагнитных вибра-ционных реле. Обычно три электромагнитных реле, осуществляющих соответственно регулирование напряжения, ограничение максимальной силы тока и отключение батареи от генератора при неработающем генераторе, объединяют в один блок, называемый реле-регулятором.  [1]

Предназначены ддя регулирования напряжения генераторов постоянного тока к оборотов двигателей постоянного тока путем жзмененйя сопротивления в цепях обмоток возбуждения машин.  [2]

Рассмотрим систему регулирования напряжения генератора постоянного тока , состоящую только из основных элементов, и на этом примере выясним особенности одноконтурных систем, распространив затем эти выводы на любые одноконтурные системы.  [3]

Регуляторы возбуждения предназначены для регулирования напряжения генераторов постоянного тока и возбудителей машин переменного тока, а также для регулирования скорости вращения ( выше номинальной) электродвигателей постоянного тока.  [5]

На рис. 35 показана схема регулирования напряжения генератора постоянного тока с помощью трехступенчатого ЭМУ продольного поля с обмоткой самовозбуждения. Генератор Г приводится во вращение дизельным двигателем ДД, генератор питает двигатель Д, связанный с рабочим механизмом.  [7]

Электронный регулятор Севзапэлектромонтаж, построенный по компенсационному принципу, предназначается для регулирования напряжения генератора постоянного тока и скорости вращения шунтового электродвигателя.  [9]

Выясним, как связана неточность регулирования со статизмом системы на примере регулирования напряжения генератора постоянного тока . На рис. 47 представлена характеристика зависимости напряжения генератора от тока нагрузки при автоматическом регулировании напряжения статическим регулятором.  [11]

Основное преимущество угольных регуляторов напряжения состоит в том, что они допускают регулирование напряжения генераторов постоянного тока большой мощности , величина тока возбуждения которых достигает 15 а и более.  [12]

Составить схему набора и рассчитать переходный процесс на модели МН-7 в системе регулирования напряжения генератора постоянного тока , принципиальная и структурная схемы которой приведены соответственно на рис. 7 — 22 и 7 — 23 при скачкообразном изменении напряжения сети переменного тока ( 1 в), от которой через выпрямительный мост питается обмотка возбуждения генератора. В системе регулирования электромашинный усилитель используется как вольтодобавочная машина. Бареттер Б, стоящий в цепи одной из обмоток управления электромашинного усилителя, является нелинейным сопротивлением, инерционностью которого можно пренебречь. Обмотки управления электромашинного усилителя У и У2 имеют одинаковые числа витков и сопротивления. Генератор работает на холостом ходу.  [13]

Составить схему набора и рассчитать переходный процесс на модели МН-7 в системе регулирования напряжения генератора постоянного тока , принципиальная и структурная схемы которой приведены соответственно на рис. 11 — 23 и 11 — 24 при скачкообразном изменении напряжения сети переменного тока ( 1 в), от которой через выпрямительный мост питается обмотка возбуждения генератора. В системе регулирования электромашинный усилитель используется как вольтодобавочная машина. Бареттер Б, стоящий в цепи одной из обмоток управления электромашинного усилителя является нелинейным сопротивлением, инерционностью которого можно пренебречь.  [14]

Однако часто встречаются нелинейные САР, в которых сам регулирующий орган работает в релейном режиме. Типичным примером двухпозиционного релейного регулирования с релейным режимом работы регулирующего органа является вибрационное регулирование напряжения генератора постоянного тока .  [15]

Регулирование напряжения в дизель-генераторах

Генераторы в современных дизель-генераторных установках выполнены по бесконтактной схеме. Это означает, что передача электрической энергии между неподвижным статором и вращающимся ротором осуществляется только посредством электромагнитных полей, без применения вращающихся колец и щеток. Бесконтактные синхронные машины не требуют периодического обслуживания щеточно-коллекторного узла и обладают высокой степенью надежности. Генераторы работают совместно с аналоговым или цифровым регулятором напряжения. Регулирование напряжения осуществляется изменением магнитного потока генератора, для чего регулятор напряжения изменяет ток возбуждения генератора.

В приведенном выражении: -напряжение на зажимах генератора; – его ток нагрузки; — внутренние сопротивление генератора; — электродвижущая сила; – магнитный поток генератора; n – частота вращения ротора; с- конструктивная постоянная.

Магнитный поток генератора нелинейным образом зависит от тока возбуждения ( ) и тока нагрузки генератора .

Читайте так же:
Как закон регулирует оборот ценных бумаг

Из приведенных соотношений видно, что напряжение на зажимах машины будет зависеть от тока нагрузки, частоты вращения и тока возбуждения. Частота вращения синхронного генератора поддерживается постоянной, чтобы обеспечить постоянную частоту тока.

На рис 1.19 приведена схема бесконтактного синхронного генератора, работающего совместно с транзисторным регулятором напряжения. Бесконтактный генератор состоит их трёх электрических машин: подвозбудителя, возбудителя и основного генератора.

Рис.1.19

Подвозбудитель магнитоэлектрического типа, т. е. он имеет возбуждение от постоянных магнитов, которые расположены на роторе. Якорная обмотка трехфазная и размещается на статоре генератора. Подвозбудитель питает регулятор напряжения и систему управления, что делает независимым их работу от внешних источников питания. Возбудитель и основной генератор имеют электромагнитное возбуждение. Обмотка возбуждения возбудителя (ОВВ) размещена на статоре и она подключается к регулятору напряжения. Якорная обмотка многофазная и расположена на роторе. Якорная обмотка через выпрямители, расположенные на роторе, питает постоянным током обмотку возбуждения основного генератора (ВГ). Якорная обмотка основного генератора трехфазная, расположена на статоре и соединена в звезду с выведенной нейтралью. Такая конструкция генератора позволяет также уменьшить мощность регулятора напряжения, т. к. возбудитель в данном случае выполняет роль усилителя тока возбуждения основного генератора.

На представленной упрощенной схеме регулятор напряжения имеет в своем составе блок измерения напряжения (БИН), модулятор ширины управляющих импульсов (МШИ), выходной транзистор VT, работающий в ключевом режиме.

Блок измерения напряжения состоит из понижающего трехфазного трансформатора, трехфазного выпрямителя, и измерительного органа на двух стабилитронах VD1, VD2 и резисторах R2, R3. Регуляторы напряжения трехфазных генераторов регулируют среднее значение трех фазных или линейных напряжений, в данном случае регулируется среднее линейное напряжение. Усреднение напряжений выполняет трехфазный выпрямитель. Измерительный орган имеет характеристику, представленную на рис.1.20а, где: UИО — напряжение на выходе (напряжение между точками а и б) измерительного органа; UН — номинальное напряжение генератора. Величина напряжения генератора, подводимого к измерительному органу, может регулироваться резистором R1. С помощью этого резистора можно задавать величину напряжения генератора, которую будет поддерживать регулятор.

Рис.1.20

Модулятор ширины импульсов формирует сигналы управления (UУ) транзистором, форма сигналов управления приведена на рис.1.20б. Здесь: IВ -ток обмотки возбуждения возбудителя; tО – время открытого состояния транзистора; tЗ – время закрытого состояния транзистора; IВСР – среднее значение тока через обмотку ОВВ.

Когда транзистор открыт напряжение питания (UП) прикладывается к обмотке возбуждения и ток в ней нарастает, когда закрыт – спадает, т. е. ток колеблется около среднего значения. Если увеличить продолжительность tО , при сохранении периода следования импульсов (показано пунктиром), то среднее значение тока будет возрастать ( ). Время открытого состояния транзистора характеризуется коэффициентом заполнения управляющих импульсов (Кγ).

.

Таким образом, изменяя коэффициент заполнения, можно регулировать ток возбуждения генератора, а, следовательно, и его напряжение.

,

где RВ – сопротивление обмотки возбуждения.

Процесс стабилизации напряжения протекает следующим образом. Если к генератору подключить нагрузку, то его напряжение снизится, это приведет к уменьшению напряжения на выходе измерительного органа, вследствие чего МШИ увеличит коэффициент Кγ и ток возбуждения возбудителя будет нарастать. Повысится напряжение в якорной обмотке возбудителя, что приведет к повышению тока возбуждения основного генератора и его напряжение повысится.

В регуляторе также имеются гибкие и жесткие отрицательные обратные связи для обеспечения устойчивости системы регулирования. При параллельной работе через регулятор напряжения управляют реактивным током генератора, для чего регулятор может оснащаться датчиком реактивного тока.

1. Как осуществляется стабилизация частоты тока в дизель-генераторах?

2. Каково назначение синхронизатора в дизель-генераторах?

3. Объясните причины изменения напряжения генератора при изменении его нагрузки.

4. Как изменить величину напряжения дизель-генератора?

5. Как изменится коэффициент Кγ при увеличении напряжения генератора?

Изучение, подключение и диагностика трехуровневого регулятора напряжения

Трехуровневый регулятор напряжения: схема подключения, как проверить, признаки неисправности

Трехуровневый регулятор напряжения (РН) представляет собой один из основных составляющих элементов генераторного устройства. Как известно, выход из строя генератора может привести к неработоспособности автомобиля в целом, поэтому состояние всех его деталей и механизмов всегда должно быть рабочим. Подробнее о регуляторе, его разновидностях, а также диагностике вы можете узнать из этого материала.

Характеристика регулятора напряжения

Что такое регулятор постоянного тока, какую роль он играет в автомобильном генераторе, какое напряжение должен выдавать генератор? Можно ли поднять и увеличить количество выдаваемого параметра с помощью простейшего трехуровневого устройства? Для начала давайте разберем, какова конструкция элемента и в чем заключается его предназначение.

Читайте так же:
Регулировка рычага переключения передач акцент

Назначение

Итак, для чего применяется электронный регулятор напряжения генератора автомобиля? При запуске силового агрегата, как известно, в первую очередь начинает вращаться коленчатый вал, это происходит в результате воздействия на него постоянного тока. Ток в амперах осуществляет начало движения роторного механизма, после чего начинает функционировать генераторный узел. Регулятор постоянного напряжения используется для контроля всех процессов.

Трехуровневый регулятор напряжения: схема подключения, как проверить, признаки неисправности

Если напряжение будет не высоким, а из-за выхода из строя регулятора напряжения генератора мощность механизма будет отсутствовать, узел запустить не получится. При отсутствии мощности генератора ток в амперах просто не будет подаваться на оборудование. Простой регулятор напряжения дает возможность удерживать ток в амперах в указанном диапазоне, это его основное предназначение.

Конструкция

Теперь разберем вопрос устройства: любой повышающий РН, даже простой и самодельный, будет состоять из:

  1. Выпрямительного блока. Этот элемент включает в себя несколько диодных компонентов, обычно их количество равно шести. Все компоненты этого блока подключаются между собой по специальному мосту.
  2. Роторный механизм с обмоткой. Это устройство осуществляет вращение вокруг оси, его предназначение заключается в образовании магнитного поля внутри узла.
  3. Статорный механизм. На корпусе данного устройства расположены три обмотки, подключенные друг к другу. Благодаря этим обмоткам обеспечивается не только обеспечение более повышенного заряда, а также увеличения мощности для автомобильного аккумулятора. Они также позволяют обеспечить током всю электросеть транспортного средства.
  4. Крыльчатки. Данный элемент устанавливается на внешней части механизма. Крыльчатка используется для обдува и охлаждения обмотки, без нее возможен перегрев последней.
  5. Корпусная крышка. Ее назначение заключается в скрытии все составляющих конструктивных частей узла, благодаря чем у обеспечивается надежная защита устройства от воздействия грязи и пыли. В зависимости от модели, крышка может иметь специальный кожух — если конструкция подразумевает его наличие, то регуляторный элемент будет расположен сразу за ним.
  6. И само реле. Если генератор выдает большое напряжение, не свойственное для бортовой сети, или слишком низкое, то реле позволит стабилизировать этот параметр до нужного уровня. Стабилизатор должен обеспечить именно оптимальное напряжение, не повышенное и не пониженное (автор видео — Виталий Галанкин).

Принцип работы

В том случае, если вы решите подключить обмотку без регуляторного устройства к источнику питания, то значение постоянного тока после подсоединения, разумеется, будет повышенным. С помощью данного устройства осуществляется выравнивание значения, что позволяет предотвратить поломку оборудования. Регуляторное устройство асинхронного генераторного узла — это, фактически, выключатель. Если напряжение на зажимах генератора не соответствует норме, механизм осуществляет регулировку параметра до нужного значения.

Перед тем, как повысить напряжение генератора, необходимо точно узнать, сколько должен быть параметр на конкретном устройстве. В идеале значение должно варьироваться в районе 14-14.2 вольт, но допускается от 13.6 вольт. Здесь многое зависит от модели автомобиля и самого генераторного узла, установленного на нем. Поэтому точно узнать, сколько вольт должно быть, нужно в технической документации.

Следует отметить, что выработка параметра производится по принципу — когда вращается роторный узел, на обмотку поступает невысокое напряжение, а в ходе вращения на выводах механизма образуется переменный ток. Впоследствии он передается на обмотку. Если вы не знаете, как повысить напряжение генератора, то в первую очередь следует проверить качество натяжки самого ремня. Как правило, о необходимости увеличивать и повышать значение напряжения автовладельца задумываются в том случае, если ремешок устройства ослаб, хотя его нужно просто подтянуть (автор видео — канал T-Strannik).

Читайте так же:
Как отрегулировать фары автомобиля в домашних условиях

Разновидности

Схема подключения РН практически идентична на всех видах генераторных узлов, однако существуют определенные разновидности девайсов.

Какие виды РН можно найти в продаже:

  1. Двухуровневые РН. Такие регуляторы на сегодняшний день считаются устаревшими, в большинстве своем они используются на отечественных авто. Конструктивно такой РН состоит из электромагнитного элемента, подключаемого к контроллеру обмотки. Также устройство оснащается пружинами, которые используются как задающие элементы, и подвижным рычагом, использующимся для стабилизации.
    Двухуровневые РН обычно небольшие по размерам. Существенным минусом девайсов такого типа считается невысокий срок службы, в результате чего они довольно быстро выходят из строя.
  2. Полупроводниковые РН на 40 ампер. В отличие от вышеописанных, такие РН обладают более высоким сроком службы, а это, в свою очередь, обеспечивает их более стабильную работу на протяжении всего ресурса эксплуатации.
  3. Трехуровневные РН. Такие девайсы по конструктивным особенностям схожи с вышеописанными. Единственно и важно отличие заключается в наличии в конструкции добавочного сопротивления.
  4. Многоуровневые РН. Как можно понять из названия, такие РН имеют много уровней защиты благодаря тому, что в их конструкции может быть 3-5 добавочных сопротивлений. В результате этого многие специалисты считают, что такое РН более эффективны и надежные, чем другие виды.

Фотогалерея «Самые распространенные виды РН»

Трехуровневый регулятор напряжения: схема подключения, как проверить, признаки неисправности

Трехуровневый регулятор напряжения: схема подключения, как проверить, признаки неисправности

Проведение диагностики РН своими руками

Теперь расскажем о том, как проверить трехуровневый регулятор напряжения своими руками. Процедура проверки регулятора может быть произведена как на СТО, так и в гаражных условиях, мы же рассмотрим второй вариант. Проверка регулятора напряжения на 40 ампер или меньше должна выполняться с помощью тестера — вольтметра либо мультиметра. Также следует учитывать, что выявление неисправностей в работе РН должно производиться исключительно при полностью заряженной АКБ.

Итак, как проверить регулятор напряжения генератора с помощью тестера:

  1. В первую очередь нужно открыть капот и повернуть ключ в замке, включив зажигание.
  2. Далее, производится запуск силового агрегата. Двигатель должен поработать вхолостую какое-то время, для получения более точных данных диагностики рекомендуется включить оптику. Число оборотов при работе двигателя должно составлять в районе 2.5-3 тысяч. Чтобы ДВС перешел в такой режим работы, обычно требуется подождать примерно 10 минут.
  3. Затем производится подключение щупов тестера к аккумуляторным выводам. Когда вы подключили тестер, на его дисплее должны высветиться показатели диагностики, в идеале они должны составлять примерно 14.1-14.3 вольта.

Если проверка показала другие значения, будь они более высокими или низкими, то нужно заняться ремонтом генераторного узла. Но как показывает практика, проблема обычно кроется именно в РН, поэтому вероятнее всего, его придется заменить. Перед тем, как приступить к диагностике, удостоверьтесь в том, что ремень нормально натянут. Во время диагностики не допускается замыкание контактов, так как это может стать причиной деформации и выхода из строя выпрямительного блока.

Видео «Подключение трехуровневого РН своими руками»

Подробная инструкция по подключению трехуровневого РН с описанием основных нюансов приведена в ролике ниже (автор — канал altevaa TV).

Устройства регулирования напряжения на ДЭС

Устройства регулирования напряжения на дизельных электростанциях. Принципиальная схема дизель-генератора АД-20М. Угольный регулятор напряжения

Одним из основных требований потребителей к качеству электроэнергии является стабильность напряжения на шинах ДЭС в условиях изменения значения и характера (cosφ) нагрузки станции. При переходе от одного режима нагрузки ДЭС к другому напряжение на шинах ДЭС будет оставаться неизменным, если ток возбуждения генератора будет изменяться в соответствии с изменением нагрузки.

Поддержание стабильного напряжения генераторов дизельной электростанции (ДЭС) осуществляется устройствами (блоками) регулирования напряжения. Автоматические регуляторы напряжения по конструкции регулирующего органа подразделяются на два типа: электромеханические и электромагнитные.

Электромеханические регуляторы состоят из подвижных частей (электромагнитов с подвижными якорями, пружин и др.) и воздействуют на ток возбуждения с помощью изменения активного сопротивления цепи обмотки возбуждения. К этому виду относятся угольные регуляторы, которые совместно с другой аппаратурой (трансформаторами, выпрямителями и другими деталями) входят в блок регулирования напряжения (БРН). На генераторах с машинным возбуждением серий ДГС и ПС-93-4 устанавливаются блоки БРН с угольными регуляторами возбуждения.

Читайте так же:
Регулировка производительности ускорительного насоса карбюратора 151 с

Электромагнитные регуляторы состоят из статических (неподвижных) частей (трансформаторов, магнитных усилителей, конденсаторов, реакторов и др.) и изменяют ток возбуждения генератора с помощью дополнительного тока от регулятора обмотки возбуждения. К этому виду регуляторов относятся компаундирующие устройства с электромагнитной коррекцией, с магнитными усилителями и др.

На генераторах серии ЕСС устанавливают БРН, выполненные на принципе компаундирования, а для увеличения точности регулирования используется электромагнитный корректор напряжения.

На генераторах серий ДГФ и ГСФ БРН выполнен на принципе фазового компаундирования с полупроводниковым корректором напряжения.

На генераторах серии СГД устанавливают регуляторы напряжения типа РНА-60, работающие на принципе фазового компаундирования с управлением от электромагнитного корректора напряжения.

Блок БРН с угольным регулятором имеет четыре исполнения: 412, 421, 422, 423. Устройство и принцип работы всех блоков БРН одинаков.

Блок БРН состоит из угольного регулятора УРН, трансформатора регулятора напряжения Тр2, стабилизующего трансформатора Тр1, селеновых выпрямителей ВС1 и ВС2, конденсаторов С1, С2 и резисторов R3, R4, R5. Все элементы БРН укреплены на каркасе и закрыты съемным кожухом.

Угольный регулятор напряжения типа УРН представляет собой прямоходовой электромеханический регулятор реостатного типа.

Угольный регулятор напряжения типа УРН-423

Рис.1. Угольный регулятор напряжения типа УРН-423.
а — общий вид; б — продольный разрез;
1 — слюдяные прокладки; 2 — фарфоровая втулка; 3,12,22,29 — винты;
4 — скоба; 5 — нажимный винт; 6 — стопорный винт;
7 — неподвижный угольный контакт; 8 — корпус регулятора;
9 — керамическая (фарфоровая) трубка; 10 — угольный столб;
11 — подвижный угольный контакт; 13 — колпак;
14 — контактная пластина; 15 — пластина для магнитопровода;
19 — стопорный винт сердечника; 20 — сердечник;
21 — основание магнитопровода; 23 — обмотка электромагнита;
24 — диамагнитная шайба; 25 — опорное коническое кольцо;
26 — пакеты пружин; 27 — якорь; 28 — пластина для крепления пружин;
30 — плунжер; 31 — амортизатор.

Регулятор типа УРН (рис.1) состоит из электромагнита с сердечником, якоря подвижной системы регулятора, над которым расположены пакеты пружин, угольных столбов, помещенных в фарфоровую трубку, расположенную на корпусе регулятора, неподвижного и подвижного угольных контактов, к которым подключены проводники.

Угольный столб 10, набранный из шероховатых отдельных шайб, включен с помощью контактов 7 и 11 в цепь обмотки возбуждения возбудителя. На угольный столб действует пружина 26, сжимающая угольные шайбы столба, и якорь 27, противодействующий сжатию пружины. Общая площадь соприкосновения угольных шайб столба, а следовательно, и его сопротивление зависят от давления, поэтому разность этих двух сил определяет сопротивление цепи обмотки возбуждения возбудителя.

При номинальном напряжении генератора подвижная система угольного регулятора находится в равновесии (усилия якоря электромагнита и пружины, сжимающей шайбы угольного столба УРН, равны). При увеличении нагрузки генератора напряжение на его выводах уменьшится, в связи с этим уменьшится ток в обмотке электромагнита УРН. Под действием пружины 26 подвижная система УРН сместится, что вызовет сжатие угольного столба и изменение (уменьшение) его сопротивления.

Уменьшение сопротивления приведет к увеличению тока в обмотках возбуждения возбудителя и генератора, напряжение на выводах генератора увеличится. При повышении напряжения генератора, вызванного сбросом нагрузки, сопротивление угольного столба Ур увеличится, а напряжение на выводах генератора уменьшится.

Принципиальная схема БРН генератора с угольным регулятором УРН

Рис.2. Принципиальная схема БРН генератора с угольным регулятором УРН.
Г — генератор; В — возбудитель;
ОВГ — обмотка возбуждения генератора;
ОВВ — обмотка возбуждения возбудителя.

Обмотка электромагнита УРН (рис.2) включена на напряжение генератора через понижающий трансформатор Тр2 и выпрямитель ВС1. Конденсаторы C1 и С2 установлены для сглаживания пульсаций выпрямленного напряжения выпрямителя ВС1.

Последовательно с первичной обмоткой Тр2 включен резистор R5, служащий для компенсации температурного изменения сопротивления обмотки Тр2.

Читайте так же:
Как отрегулировать фары на ленд ровер

Реостат установки РУ включен в цепь вторичной обмотки Тр2 для установки уровня автоматического peгулирования напряжения. Угольный столб УРН и резистор R3 включены последовательно в цепь обмотки возбуждения возбудителя. Резистор R3 служит для уменьшения мощности рассеивания в угольном столбе УРН. Стабилизирующий трансформатор Тр1 служит для устранения неустановившихся колебаний напряжения генератора, возникающих при работе УРН. Первичная обмотка трансформатора Тр1 включена через сопротивление R4 на напряжение якоря возбудителя, а вторичная — последовательно в цепь электромагнита УРН. Параллельно обмотке возбуждения возбудителя подключен выпрямитель ВС2 для предохранения угольного столба УРН от подгара при перенапряжениях на зажимах обмотки возбуждения возбудителя.

При уменьшении напряжения генератора напряжение на первичной и вторичной обмотках трансформатора Тр2 понизится, что вызовет уменьшение тока в цепи электромагнита УРН и сопротивления угольного столба УРН.

Использование схемы компаундирования обеспечивает точность поддержания напряжения ±5%, а применение электромагнитного корректора увеличивает точное поддержания напряжения до ±2%.

Блок регулирования напряжения с электромагнитным корректором состоит из блока компаундирования, установленного на генераторе, и блока электромагнитного корректора.

Принципиальная схема дизель-генератора АД-20М

Рис.3. Принципиальная схема дизель-генератора АД-20М

На рис.3 изображена принципиальная схема регулятора напряжения с электромагнитным корректором.

В регуляторе использован принцип фазовою компаундирования и применены три однофазных четырехобмоточных трансформатора ТТП с подмагничиванием от корректора напряжения. Одна из первичных обмоток ТТП включена последовательно с нагрузкой генератора, а другая — через линейный реактор Р параллельно нагрузке. Вторичная обмотка ТТП через выпрямитель СВ1 соединена с обмоткой возбудителя генератора.

Корректор напряжения состоит из автотрансформатора АТН, магнитного усилителя МУ и измерительного органа, имеющего нелинейный реактор НР, линейный реактор ЛP и конденсатор С2.

Небольшое увеличение напряжения на выводах генератора приводит к резкому увеличению тока реактора НР, который увеличивает ток в обмотке управления МУ. Возросший выходной ток МУ проходит через выпрямитель СВ2 и подается на обмотку подмагничивания трансформатора ТТП. Увеличение тока в обмотке подмагничивания вызовет уменьшение тока во вторичной обмотке ТТП и в обмотке возбуждения генератора, что приведет к уменьшению напряжения на выводах генератора.

При уменьшении напряжения на зажимах генератора наблюдается обратная картина. На дизель-генераторах кроме напряжения часто меняется и частота, поэтому в корректоре предусмотрена частотная компенсация.

В схеме корректора частотная компенсация осуществляется реактором ЛР и конденсатором С2, которые изменяют напряжение на реакторе ИР пропорционально изменению частоты генератора и оставляют ток HP неизменным. Эта схема обеспечивает независимость тока HP от изменения частоты и позволяет при изменении частоты от 48 до 52 Гц обеспечить изменение напряжения генератора в пределах ±2%.

Блок регулирования напряжения с полупроводниковым корректором напряжения. Полупроводниковый корректор напряжения в БРН предназначен для поддержания стабильного напряжения на выводах генератора в пределах ±2%.

Принципиальная схема полупроводникового корректора напряжения

Рис.4. Принципиальная схема полупроводникового корректора напряжения

Корректор напряжения (рис.4) собран на полупроводниковых элементах и работает в импульсном режиме. Он состоит из измерительного органа и усилителя.

Измерительный орган корректора измеряет напряжение на зажимах генератора и сравнивает его с заданным. Разность между действительным и заданным напряжениями служит сигналом, который управляет полупроводниковым усилителем, соединенным с обмоткой управления трансформатора компаундирования.

Измерительный орган состоит из трансформатора ТИ, первичная обмотка которого подключена на линейное напряжение генератора через резистор R15 и регулируемый резистор РУН, выпрямителя В1, кремниевого опорного диода В2, конденсаторов С1-С2, резисторов R1, R2, R3, R5, R6, терморезисторов R7-R9, транзистора Т1.

Напряжение генератора после выпрямителя В2 и сглаживающего фильтра R8-С1 поступает на вход транзистора Т1. Входной сигнал Т1 будет тем больше, чем больше напряжение генератора превышает опорное напряжение диода В2, т.е. измерительный орган корректора преобразует превышение напряжения генератора над опорным напряжением В2 в выходной ток транзистора Т1, поступающий на вход усилителя. Если Uг

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector