Sheloil.ru

Шелл Оил
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема плавной регулировки скорости вентилятора для печки в авто

Схема плавной регулировки скорости вентилятора для печки в авто

Описана схема электронного регулятора, который управляется переменным резистором и позволяет плавно регулировать частоту вращения вентилятора печки, чтобы установить наиболее комфортный режим его работы.

В большинстве недорогих автомобилей скорость вращения вентилятора печки управляется при помощи переключателя всего на три или четыре положения.

При этом, в частности, в автомобилях марки «ВАЗ» уже на первом или втором положении переключателя вентилятор работает слишком сильно и шумно. Да и такого небольшого выбора режимов маловато.

Принципиальная схема

Схема состоит из мультивибратора на микросхеме типа К561ЛА7 и выходного каскада на мощном полевом транзисторе типа IRF9540.

Принципиальная схема плавного регулятора скорости вращения вентилятора для пеки в автомобиле

Рис. 1. Принципиальная схема плавного регулятора скорости вращения вентилятора для пеки в автомобиле.

На микросхеме D1 типа К561ЛА7 сделан мультивибратор, скважность выходных импульсов которого можно в очень широких пределах регулировать с помощью переменного резистора R1.

Частота импульсов неизменная и составляет около 400 Гц. Регулируя переменный резистор R1 изменяем соотношение длительностей положительных и отрицательных полуволн за счет различия сопротивлений R -составляющих частотозадающей RC-цепи, коммутируемых диодами VD1 и VD2.

Практически регулировать мощность можно от 90% до 10% от максимального значения. Но в реальности такого широкого диапазона регулировки не требуется. поэтому в схеме есть резисторы R5 и R6 величины сопротивлений которых нужно подобрать при налаживании, так чтобы регулировка происходила в удобном для пользователя диапазоне.

Собственно мультивибратор выполнен на элементах D1.1 и D1.2. С выхода элемента D1 2 импульсы поступают на усилитель мощности, сделанный на оставшихся двух элементах микросхемы D1 — D1.3 и D1.4. Эти элементы соединены параллельно С их выходов импульсы через резистор R4 поступают на затворы полевых транзисторов.

В данной схеме сопротивление R4 уменьшено, чтобы обеспечить больше скорость открывания транзисторов и этим самым снизить их нагрев в момент переходного процесса между закрытым и открытым состоянием. В связи с этим увеличивать напряжение питания схемы выше 15V не рекомендуется так как это приведет к повышенной нагрузке на выходы элементов D1.3 и D1.4 микросхемы D1.

Для того чтобы полностью выключить регулятор в то время когда вентилятор печки не требуется, здесь применен переменный резистор R1 совмещенный с выключателем. Такие переменные резисторы применяются в регуляторах громкости с выключателями питания аналоговой аудиоаппаратуры. Это выключатель RS1.

Резистор R1 подключен таким образом чтобы выключатель RS1 выключался, когда резистор находится в крайнем положении с минимальной частотой вращения вентилятора печки. При этом на выводы 9 и 13 D1.3 и D1.4 поступает напряжение логического нуля через резистор R7. И элементы переходят в фиксированное состояние логической единицы на выходах.

Что приводит к полному закрыванию полевого транзистора VТ1. При повороте ручки переменного резистора из этого положения выключатель замыкается и подает на эти входы элементов D1.3 и D1.4 напряжение от источника питания, то есть, логическая единица. Теперь состояние выходов этих элементов будет зависеть от логического уровня на их других входах.

Напряжение питания, поступающее на микросхему ограничено цепью из резистора R3 стабилитрона VD4 чтобы оно не превышало 13V. Кроме того конденсатор С2 вместе с диодом VD3 способен поддерживать напряжение питания микросхемы в том случае, если общее напряжение питания будет снижаться.

Детали

Транзисторы VТ1 типа IRF9540 можно заменить на IR9Z34, КП785А, КП784А. Микросхему К561ЛА7 можно заменить на К176ЛА7 или CD4011, либо любым аналогом «хх4011».

Стабилитрон КС515А можно заменить на КС215Ж, КС508Б, 1N4744A, TZMC-15. Стабилитрон КС213Ж можно заменить на КС213Б. 1N4743A. BZX/BZV55C-13. Полевой транзистор нужно установить на теплоотвод с площадью охлаждающей поверхности не менее 40 см7.

Читайте так же:
Регулировка китайского карбюратора к 2401

Простейший регулятор для вентилятора постоянного тока

Вентиляторы могут использоваться для охлаждения схем, но постоянное вращение при номинальном напряжении приводит к механическом износу, прежде всего, подшипников. Включая вентилятор лишь по мере необходимости, и на скорости, соразмерной температуре, можно существенно продлить срок его жизни, так же, как и срок жизни охлаждаемой им аппаратуры.

Вебинар «Новые решения STMicroelectronics в области спутниковой навигации» (17.11.2021)

Простейшая схема управления лишь включает и выключает вентилятор, но расплатой за простоту являются коммутационные помехи по питанию и высокие механические нагрузки на вентилятор. Пропорциональные контроллеры, безусловно, более элегантны. Они включаются при переходе температуры через определенный порог, увеличивают скорость вращения по мере роста температуры, плавно снижают скорость, когда схема начинает остывать, и, наконец, останавливаются совсем.

Однако, большинство пропорциональных регуляторов скорости вращения вентиляторов неоправданно сложны, поскольку охлаждение схем – задача далеко не из области точных наук. Предлагаемая на Рисунке 1 схема ничуть не менее эффективна, чем навороченные регуляторы, и много раз с успехом использовалась. Для схемы необходимы только термисторный датчик температуры, MOSFET транзистор, резистор и конденсатор для блюстителей схемотехнической нравственности. Предполагается, что термистор имеет отрицательный температурный коэффициент. Если вы располагаете термистором с положительным коэффициентом, поменяйте его местами с резистором R1.

Простейший пропорциональный регулятор для вентилятора постоянного тока можно сделать на термисторе и MOSFET транзисторе.

При комнатной температуре напряжение на затворе транзистора ниже типового порогового уровня Vgs(th), ток стока отсутствует, и вентилятор выключен. По мере роста температуры, сопротивление термистора падает, напряжение Vgs(th) растет, и транзистор начинает открываться. При достаточно высокой температуре транзистор входит в насыщение, и вентилятор начинает вращаться с максимальной скоростью. Практически получается, что интервал температур, в котором вентилятор из выключенного состояния достигает максимальной скорости, равен приблизительно 5 °C.

Пороговая температура, при которой начинается вращение вентилятора, устанавливается резистором R1. Для примера, пороговое напряжение затвора MOSFET транзистора NTD4959NH фирмы ON Semiconductor равно 2.0 ±0.5 В. Сопротивление RТЕРМ термистора ERTJ1VR103H производства Panasonic при температуре 25 °C имеет типовое значение 10 кОм. Чтобы установить порог 40 °C при напряжении питания вентилятора 12 В, сопротивление резистора должно быть:

Взяв типовое значение Vgs(th) = 2 В и сопротивление термистора при 40 °C RТЕРМ = 5.067 кОм (из справочных данных), находим ближайшее значение в ряду 1% резисторов R1 = 1.00 кОм.

Вследствие технологического разброса пороговых напряжений Vgs(th), температура включения также будет иметь разброс от экземпляра к экземпляру. При небольшом объеме производства проблему можно решить, заменив R1 подстроечным резистором. Но это увеличит цену изделия, поэтому, возможно, вам придется просто смириться с этим фактом.

По счастью, N-канальные MOSFET транзисторы имеют отрицательный температурный коэффициент напряжения порога, что, отчасти, компенсирует последствия разброса Vgs(th). Тем не менее, необходимо убедиться, что разброс температур включения будет приемлем для вашей системы.

Двигаясь в обратном направлении, от крайнего верхнего к крайнему нижнему значению указанного в справочных данных порогового напряжения Vgs(th), рассчитаем диапазон пороговых температур для наихудшего случая:

Vgs(th)мин. = 1.5 В и R1 = 1.00 кОм

Таким образом, вентилятор начнет вращаться при

RТЕРМ = 1.00 кОм × (12 В – 1.5 В)/1.5 В = 7.00 кОм,

что, согласно справочным данным, произойдет при температуре 33 °C. Аналогично, при самом большом пороговом напряжении, вращение вентилятора начнется при сопротивлении термистора 3.80 кОм и температуре 46 °C. Поскольку пороговое напряжение большинства MOSFET транзисторов будет располагаться вблизи середины указанной в справочнике зоны разброса, мы вправе ожидать, что температура включения вентилятора в крупных партиях изделий будет находиться в диапазоне 40 ±3 °C.

Теперь, несколько аспектов, на которые следует обратить внимание. Прежде всего, схема применима только к небольшим вентиляторам постоянного тока. Для больших вентиляторов, или массивов вентиляторов, схема будет неэффективной, а с вентиляторами переменного тока вовсе неработоспособной. Далее, необходимо посмотреть в справочных материалах на вентилятор, способен ли он работать в режиме периодического включения. Как правило, большинство вентиляторов на это рассчитаны. Но иногда требуется, чтобы скорость не падала ниже определенного минимального значения. В таком случае, поставьте резистор параллельно MOSFET транзистору.

Читайте так же:
Автоматическая регулировка звука в windows 10

И, наконец, нельзя забывать о том, что при средней скорости вращения вентилятора, MOSFET транзистор работает в линейном режиме и может рассеивать значительную мощность. Поскольку такое происходит только при вращении вентилятора, самым простым решением будет размещение транзистора на пути воздушного потока.

Управление вентилятором от датчика температуры

Многие электроприборы рассеивают некоторую мощность в виде тепла и никуда от этого не денешься. Если выделяемое тепло плохо выводится из корпуса устройства, это неизбежно приведет к сбоям в работе или даже выходу из строя вашего гаджета. Поэтому, по мере возможности, для более эффективного охлаждения добавляют вентиляторы.

управление вентилятором от датчика температуры

Теперь вопрос: зачем крутить вентилятор в те моменты, когда тепло не выделяется, т.е. устройство работает без нагрузки? Лишний шум обычно напрягает. Для контроля температуры в месте нагрева следует установить датчик. И пусть это слово вам не кажется чем-то непостижимым, чем-то сложным. В качестве датчика будем использовать терморезисторы. Что это такое? Это обычные резисторы, но их сопротивление изменяется под действие температуры. Сопротивление может либо увеличиваться при нагреве, либо уменьшаться.

Давайте посмотрим как использовать такое свойство терморезисторов. Признаюсь честно, впервые идею я нашел на YouTube канале Виктора Сочи. Идея простая, легко реализуется, не требует больших затрат ни денег, ни времени.

Чтобы не быть голословным рассмотрим элементы, которые нам понадобятся.

Во-первых, сам терморезистор. На алиэкспрессе продают по 10шт. Цена чуть больше доллара. Есть и по 20шт. — тогда меньше доллара. Нас будут интересовать NTC-термисторы. У таких термисторов падение сопротивления происходит при увеличении температуры. Существуют еще PTC-термисторы или позисторы. У них, наоборот, растет температура — растет сопротивление.

датчики температуры. Термисторы.

термисторы

Следующий элемент, пожалуй, самый важный — модуль понижающий напряжение. Удобнее всего использовать модуль показанный на рисунке. Модуль просто крошечный (2х1см) и имеет высокий КПД. Продают по 5шт. за 3 доллара. Лишние не пропадут, пригодятся для других целей.

Модуль для управления вентилятором

Ну, и сам вентилятор. Размер может быть любой, в зависимости от места установки. Да и напряжение питание любое, обычно 12 или 5 вольт. Правда, следует заметить, если вентилятор на 12 вольт, то на входе понижающего модуля должно быть как минимум 13 вольт, для 5 вольтового соответственно 6 вольт. Недорогие вентиляторы размером 40х40мм можно посмотреть здесь — на 5 В и на 12 В.

вентилятор 5-12 вольт

Теперь посмотрим как соединить, отдельные компоненты, чтобы они стали одним целым. Посмотрите на рисунок ниже. Вентилятор припаиваем к выходным контактам модуля соблюдая полярность. Земля или GRN у нас общая для входящего и выходного напряжения. Модуль позволяет подавать на вход до 24 вольт максимум, ну, а минимум, как я уже говорил, зависит от напряжения питания вентилятора. И разумеется модуль не работает с переменным напряжением, только с постоянным. Датчик припаиваем как показано на схеме.

схема управления вентилятором от датчика температуры с использованием модуля dc-dc

Начальная скорость вентилятора подбирается с помощью подстроечного резистора, расположенного с обратной стороны модуля. Собственно параллельно ему мы и припаиваем датчик. Для 5 вольтового вентилятора лучше использовать термистор на 50 Ком, для 12 вольтового — 100Ком.

Небольшое замечание: Если в одном устройстве требуется контролировать температуру нескольких модулей, соедините датчики параллельно и разметите их в нужных местах. Но помните о правиле параллельного соединения резисторов. И еще одно полезное замечание — ножки датчиков не изолированы (нет лакового покрытия). Для изоляции используйте, например, термоусадку. Если ножки датчиков случайно замкнуть толку от них не будет.

Читайте так же:
Как регулировать зазор клапанов мотоцикл

Переменный резистор для кулера

Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера. В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры, автоматическую регулировку скорости и т.д.).

Схема регулятора оборотов вентилятора.

Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор.

В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе пользователь может поставить слишком низкое напряжение на вентиляторе, при котором он будет продолжать крутиться, но которого будет недостаточно для его запуска при включении.

  • В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.
  • Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.
  • Постоянный резистор может быть любого типа с сопротивлением 1 или 1.2 кОм.

Дополнительно стоит отметить, что если у Вас возникнут трудности с приобретением переменного резистора необходимого сопротивления, то в схеме можно применить переменный резистор R1 сопротивлением от 470 Ом до 4,7 кОм, но при этом придётся изменить и сопротивление резистора R2, оно должно быть таким же, как и у R1.

Монтаж и подключение регулятора скорости.
Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто:

регулятор оборотов

в разрыв цепи +12В, как показано на рисунке.
Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких плюс питания подаётся по желтому проводу), то регулятор включается в разрыв желтого провода.

Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.

Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 – 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 – 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.

Мы уже не раз на страницах журнала "Компьютерра" и сайта Ferra.ru обращались к теме шума компьютера вообще и снижения шума вентиляторов и кулеров в частности (см., например, "КТ" #381, www.ferra.ru/online/supply/5961, www.ferra.ru/online/supply/9668 и www.ferra.ru/online/supply/20793). Предлагаем вашему вниманию еще один краткий взгляд на эту проблему.

Помнится, в конце 1980-х один мой приятель жаловался, что его «Спектрум» не дает спать соседям: шаговый двигатель пятидюймового флоппи-дисковода, лежащего на столе (а где вы тогда видели «Спектрум» в корпусе?), входил в резонанс с этим самым столом и был слышен этажом ниже ничуть не хуже электродрели.

Читайте так же:
Как пользоваться щупами для регулировки клапанов

Позже уже мои соседи наслаждались воем подшипников пятидюймового двадцатимегабайтного винчестера Seagate, и его приходилось укутывать в два слоя пористой резины. Сейчас времена не те, основные компоненты компьютеров стали «тише воды, ниже травы», но для людей, работающих ночами, особенно когда остальные члены семьи уже спят, шум компьютера, как и раньше, выходит на первое место. Приходится выбирать «мягкую» клавиатуру, переключать винчестеры в Acoustic mode в ущерб производительности (звук головок, кстати, бывает очень разным: на мой изощренный слух сухой «треск» дисков от IBM или Maxtor значительно приятнее, например, «консервной банки» Seagate U-серии, но в «тихом» режиме все они практически беззвучны), воздерживаться от установки пиратских CD-ROM с огромным эксцентриситетом.

Впрочем, есть компоненты, с шумом которых приходится мириться, — это вентиляторы. Обычно их два: в блоке питания и на процессоре. И тот и другой можно заменить более тихими, но, если для процессорных кулеров можно найти хоть какие-то результаты тестов с указанием шумности, то вентилятор блока питания приходится выбирать «на глаз» или путем перебора вариантов. Единственное, что может помочь, — указанная на этикетке мощность: чем она выше, тем производительнее и, соответственно, шумнее вентилятор («на глаз» могу отметить лишь, что прямые «рубленые» лопасти издают больше шума, нежели гнутые серповидные).

В большинстве случаев создаваемый вентилятором процессорного кулера воздушный поток избыточен, особенно учитывая, что он циркулирует в замкнутом пространстве корпуса. Воздух, продуваемый через ребра радиатора, просто не успевает нагреваться. Гораздо большее значение имеет площадь поверхности и материал радиатора, плотность прилегания к кристаллу, а также температура внутри корпуса (вернее, разность температуры радиатора и воздуха); обороты же вентилятора зачастую можно снизить вдвое, при этом температура процессора возрастет лишь на вполне безопасные 3–5 градусов.

С вентиляторами блоков питания дело обстоит сложнее. Вопреки распространенному мнению, вентилятор этот охлаждает не только и не столько блок питания, сколько обеспечивает циркуляцию воздуха внутри корпуса (обычно в корпусах ATX блок питания размещен сверху, и вентилятор работает на вытяжку), которая сильно влияет на эффективность работы процессорного кулера. Здесь вмешивается еще и сам корпус: его объем и высота, размещение блока питания, наличие и расположение вентиляционных отверстий. Обладателям мощных процессоров, желающим снизить шум вентилятора блока питания, могу рекомендовать снижать его обороты, компенсируя воздушный поток установкой в нижней части корпуса дополнительного нагнетающего вентилятора (его тоже можно не «крутить на всю катушку»).

Теперь перейдем к способам снижения оборотов вентиляторов.

Один из самых простых — переключение на пониженное напряжение питания. Штатно все вентиляторы запитаны от 12 В, но большинство вполне работоспособно и при питании 5 В. Для процессорного кулера достаточно лишь извлечь наконечник среднего провода (обычно красный) из трехконтактного вентиляторного разъема и вставить его в 5-вольтовое гнездо свободной «фишки» питания (тоже красный провод). В блоке питания — перепаять красный провод вентилятора со штатного места на выход 5 В (опять же красные силовые провода). Работоспособность схемы контроля оборотов при этом сохраняется. Шум падает почти до нуля, впрочем, и обороты снижаются слишком сильно, поэтому способ годится разве что для маломощных систем.

Лучшие результаты дает переключение питания на 7 В. Надеюсь, читатели уже догадались: это разность между 5- и 12-вольтовым питанием. Выполняется аналогично первому варианту, за исключением того, что к 5-вольтовому питанию подключается не красный, а черный провод вентилятора. Недостаток — перестает работать схема контроля оборотов.

Более грамотное решение — снижение тока с помощью резистора, включенного в разрыв провода питания вентилятора. Номинал зависит от мощности вентилятора и степени снижения оборотов; для типовых кулеров применимы резисторы от 10 до 75 Ом мощностью 0,25 Вт. Подобный способ применяется не только на любительском уровне: промышленно выпускаются переходники (на фото); обычно там используется резистор 10 Ом, который снижает обороты незначительно. Недостаток такого решения — сильное ограничение пускового тока вентилятора. В один прекрасный момент забившийся пылью подшипник может не позволить ротору сдвинуться с места.

Читайте так же:
Сузуки летс 2 регулировка иглы карбюратора

Самое же корректное, на мой взгляд, решение — включение в разрыв цепи питания вентилятора стабилитрона с напряжением стабилизации 3–6 В. Подбором типа стабилитрона можно выбрать нужные обороты, при этом сохраняется и большой пусковой ток, и работоспособность схемы контроля оборотов.

Используя подобные решения, не забывайте о программах мониторинга, контролирующих вентиляторы. Если монитор системной платы плохо совместим с низкооборотным вентилятором, обновите BIOS: большинство производителей добавили в последнее время поддержку низкооборотных кулеров.

Напоследок расскажу одну историю. Месяц назад, покупая самый дешевый привод CD-RW, я спросил продавца: что взять при равной цене — NEC или Mitsumi? И без всяких наводящих вопросов получил ответ: конечно же, Mitsumi — он тише, а скорость… да что тебе скорость?

Все, чем занимаюсь на работе: компьютеры, автоматизация, контроллеры, программирование и т.д.

четверг, 17 сентября 2015 г.

Уменьшение оборотов вентилятора с помощью резистора

В очередной материнской плате с сокетом 775 сильно грелся южный мост. Размеры радиатора ЮМ меньше 40×40 мм и пластиковые крепления торчат выше его плоскости. Поэтому стандартный 40-миллиметровый вентилятор прикрепить прямо на радиатор невозможно. Пришлось закрепить 40-мм вентилятор на корпус системного блока через самодельные крепления из жестяных заглушек.

Проблема в том, что дешевый втулочный вентилятор, хотя и абсолютно новый, сильно гудел. Причина оказалась в вибрации, которую вентилятор передавал на ножки крепления. Чтобы вентилятор гудел по-меньше, я понизил его обороты через резистор:

Это помогло: оборотов стало меньше, вибрация понизилась и гудения больше нет. Поток воздуха на радиатор, конечно, тоже уменьшился, но его еще достаточно для нормального охлаждения- при работе радиатор чуть тёплый.

Надо сказать, что рекомендуемым способом понижения оборотов вентилятора в ПК является ШИМ-регулирование, когда постоянное напряжение 12 В подают на вентилятор не постоянно, а импульсами. Уменьшение оборотов через резистор не является рекомендуемым способом, но намного проще и при этом работает. При включении вентилятора через резистор, в отличии от ШИМ, вместо стандартного напряжения в 12 В на него приходит меньшее напряжение. Уменьшили напряжение- уменьшилась скорость вращения.

Для начала удостоверимся, что понижение напряжения допустимо для нашей модели. Например, мой вентилятор SENSDAR SD4010M1S работает при напряжениях 6-13.8 В:

Опытным путем я подобрал резистор 56 Ом, 1 Вт:

При таком сопротивлении резистора на вентилятор приходит напряжение не 12.3 В(столько по линии 12 В выдает данный блок питания при включенной материнской плате), а 8.3 В. Напряжения оказалось достаточно для уменьшения скорости вращения вентилятора при необходимом уровне охлаждения радиатора ЮМ. Резистор я выбрал с рассеиваемой мощностью 1 Вт, т.к. вентилятор потребляет 12 В * 0.08 А= 0.96 Вт. Если для моего вентилятора выбрать менее мощный резистор, то резистор просто перегорит. Во время работы компьютера резистор теплый, но не слишком. Значит, всё ок. Но рекомендую ставить резистор на 2 Вт, на всякий случай.

Не забываем надежно изолировать места пайки провода и резистора(на фото- белые резиновые трубки), а то замкнет на корпус и будет пожар. Сам керамический корпус резистора является изолятором и не проводит электричество, его боятся не надо.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector