Sheloil.ru

Шелл Оил
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование частоты вращения асинхронных двигателей

Регулирование частоты вращения асинхронных двигателей

из которой следует три принципиально возможных метода регулирования скорости асинхронных двигателей: изменением частоты питающего напряжения, числа пар полюсов и величи­ны скольжения .

Частотное регулирование. Этот способ регулирования скорости позволяет применять наиболее надежные и дешевые асинхронные двигателя с короткозамкнутым ротором. Од­нако для изменения частоты питающего напряжения требуется наличие источника элект­рического тока переменной частоты. В качестве последнего можно использовать: синхронный генератор с переменной частотой вращения; преобразователи частоты: электромашин­ные или статические, выполненные на полупроводниковых тиристорах или силовых транзисторах.

При частотном регулировании скорости можно регулировать вниз от (номинальной скорости) и вверх от номинальной. При регулировании скорости вниз от номинальной с изменением частоты изменяют подводимое напряжение ; при этом магнитный поток остаётся неизменным. Графики механических характеристик представлены на рис, 73.

Рис. 73. Механические характеристики

Регулирование путем изменения числа пар полюсов. Такое регулирование позволяет получить ступенчатое изменение частоты вращения. На рис. 74 показана простей­шая схема (для одной фазы), позволяющая изменять число полюсов обмотки статора в два раза. Для этой цели каждую фазу обмотки статора разделяют на две части, которые переключают с последовательного соединения на параллельное. Из рисунка видно, что при включении катушек в две параллельные ветви число полюсов уменьшается в два ра­за, а следовательно, частота вращения магнитного поля в два раза увеличивается.

Рис. 74. Схема переключения обмотки статора для изменения числа полюсов:

а – при 2р=4, б – при 2р=2.

При переключении число последовательно включенных витков в каждой фазе уменьшается вдвое, но так как частота вращения возрастает в два раза, ЭДС, индуктированная в фа­зе, остается неизменной. Следовательно, двигатель при обеих частотах вращения может быть подключен к сети с одинаковым напряжением. Чтобы не осуществлять переключения в обмотке ротора, последнюю выполняют короткозамкнутой. Если нужно иметь три или четыре частоты вращения, то на статоре располагают еще одну обмотку, при переключении которой можно получить дополнительно две частоты. Асинхронные двигатели с переключением числа полюсов называют многоскоростными.

Регулирование скорости изменением скольжения, осуществляется:

а) путем включения в цепь ротора добавочного активного сопротивления (рис. 75). Этот способ регулирования может быть использован только для двигателя с фазным ро­тором. Он позволяет плавно изменять частоту вращения в широкий пределах.

Рис. 75. Изменение формы механической характеристики при регулировании

частоты вращения с помощью добавочного сопротивления

Недостатками его являются:

1) большие потери энергии в регулировочном реостате;

2) чрезвычай­но "мягкая" механическая характеристика двигателя при большом сопротивлении в це­пи ротора. В некоторых случаях последнее является недопустимым, так как небольшому изменению нагрузочного момента соответствует существенное изменение частоты враще­ния.

Читайте так же:
Top automotive регулировка фар инструкция

б) регулирование путем изменения величины питающего напряжения в небольшом диапазоне.

Дата добавления: 2016-10-18 ; просмотров: 3352 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Перечислите способы регулирования частоты вращения асинхронных двигателей. Опишите и объясните регулирования частоты вращения ротора изменением скольжения.

Асинхронные двигатели являются основой современного электропривода переменного тока. Эффективность работы этого электропривода во многом определяется возможностями регулирования частоты вращения.

Возможности асинхронных двигателей в отношении регулирования частоты вращения ротора определяются выражением:

Из этого выражения следует, что частоту вращения ротора асинхронного двигателя можно регулировать изменением какой-либо из трех величин: скольжения s, частоты тока в обмотке статора f1 или числа полюсов в обмотке статора .

Регулирование частоты вращения изменением скольжения sвозможно тремя способами: изменением подводимого к обмотке статора напряжения, нарушением симметрии этого напряжения и изменением активного сопротивления обмотки ротора.

Регулировка частоты вращения изменением скольжения про­исходит только в нагруженном двигателе. В режиме холостого хода скольжение, а следовательно, и частота вращения остаются практически неизменными.

Регулирование частоты вращения изменением подводи­мого напряжения. Возможность этого способа регулирования подтверждается графиками М = f(s), построенными для разных значений U ( рис. 1).

При неизменной нагрузке на валу дви­гателя увеличение подводимого к двигателю напряжения вызыва­ет рост частоты вращения. Однако диапазон регулирования часто­ты вращения получается небольшим, что объясняется узкой зоной устойчивой работы двигателя, ограниченным значением критиче­ского скольжения и недопустимостью значительного превышения номинального значения напряжения, т.к. с превышением номинального напряжения возникает опас­ность чрезмерного перегрева двигателя, вызванного резким увели­чением электрических и магнитных потерь. В то же время с уменьшением напряжения двигатель утрачивает перегрузочную способность, которая, пропорциональна квадрату напряжения сети.

Подводимое к двигателю напряжение изменяют либо регули­ровочным автотрансформатором, либо реакторами, включаемыми в разрыв линейных проводов.

Узкий диапазон регулирования и неэкономичность (необхо­димость в дополнительных устройствах) ограничивают область применения этого способа регулирования частоты вращения.

Регулирование частоты вращения нарушением симметрии подводимого напряжения. При нарушении симметрии подводи­мой к двигателю трехфазной системы напряжения вращающееся поле статора становится эллиптическим. При этом поле приобретает обратную составляющую (встречное поле), которая создает момент Мобр, направленный встречно вращающему момен­ту Мпр. В итоге результирующий электромагнитный момент двига­теля уменьшается (М = Мпр — Мобр).

Механические характеристики двигателя при этом способе регу­лирования располагаются в зоне между характеристикой при симмет­ричном напряжении (рис. 2.а, кривая 1) и характеристикой при однофазном питании дви­гателя (рис. 2.а, кривая 2) — пределом не симметрии трехфазного напряжения.

Для регулировки не симметрии подводимого напряжения можно в цепь одной из фаз включить однофазный регулировоч­ный автотрансформатор (AT) (рис. 2.б). При уменьшении напряжения па выходе AT не симметрия увеличивается, и частота вращения ротора уменьшается.

Читайте так же:
Регулировка предохранительного клапана насоса дозатора мтз

Недостатками этого способа регулирования являются узкая зона регулирова­ния и уменьшение КПД двигателя по мере увеличения не симметрии напряжения. Обычно этот способ регулирования частоты вращения применяют лишь в двигателях малой мощности.

Регулирование частоты вращения изменением активного сопротивления в цепи ротора. Ме­ханические характеристики АД, построенные для различных значений активного сопротивления цепи ротора (см. рис. 3), показывают, что с увеличением активного сопро­тивления ротора возрастает скольжение. Частота вращения двигателя при этом уменьшается.

Изменение активного сопротивления цепи ротора достигается включением в цепь ротора регулировочного реостата (РР), рассчитанного на длительный режим работы. Электрические потери в роторе пропорциональны скольжению (Рэ2 = s*Pэм), поэтому умень­шение частоты вращения (увеличение скольжения) сопровождается ростом электрических потерь в цепи ротора и снижением КПД двигателя. Это свидетельствует о неэкономичности данного способа регулирования.

Ре­гулирования частоты вращения изменением активного сопротивления в цепи ротора широко применяется в асинхронных двигателях с фазным ротором. В зависимости от конструкции регули­ровочного реостата этот способ регулирования частоты вращения может быть плавным или ступенчатым. Способ обеспечивает регулирование частоты вращения в ши­роком диапазоне, но только вниз от синхронной частоты враще­ния. Вместе с тем он обеспечивает двигателю улучшенные пуско­вые свойства.

Способы регулирования скорости асинхронного двигателя

Способы регулирования скорости вращения асинхронного двигателя

Почти все станки в качестве электропривода оснащаются асинхронными двигателями. У них простая конструкция и не высокая стоимость. В связи с этим важным оказывается регулирование скорости асинхронного двигателя. Однако в стандартной схеме включения управлять его оборотами можно только с помощью механических передаточных систем (редукторы, шкивы), что не всегда удобно. Электрическое управление оборотами ротора имеет больше преимуществ, хотя оно и усложняет схему подключения асинхронного двигателя.

Для некоторых узлов автоматического оборудования подходит именно электрическое регулирование скорости вращения вала асинхронного электродвигателя. Только так можно добиться плавной и точной настройки рабочих режимов. Существует несколько способов управления частотой вращения путём манипуляций с частотой, напряжением и формой тока. Все они показаны на схеме.

Из представленных на рисунке способов, самыми распространёнными для регулирования скорости вращения ротора являются изменение следующих параметров:

  • напряжения подаваемого на статор,
  • вспомогательного сопротивления цепи ротора,
  • числа пар полюсов,
  • частоты рабочего тока.

Последние два способа позволяют изменять скорость вращения без значительного снижения КПД и потери мощности, остальные способы регулировки способствуют снижению КПД пропорционально величине скольжения. Но и у тех и других есть свои преимущества и недостатки. Поскольку чаще всего на производстве применяются асинхронные двигатели с короткозамкнутым ротором, то все дальнейшие обсуждения будут касаться именно этого типа электродвигателей.

Читайте так же:
Регулировка фар acura mdx

Частотное регулирование

Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети. Скорость вращения поля статора определяется по следующей формуле:

n1 = 60f/p, где n1 — частота вращения поля (об/мин), f-частота питающей сети (Гц), p-число пар полюсов статора, 60 — коэффициент пересчета мерности.

Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение. Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.

Современные частотные регуляторы позволяют уменьшать и увеличивать обороты в широком диапазоне. Это обеспечило их широкое применение в оборудовании с управляемой протяжкой, например, в многоконтактных станках сварной сетки. В них скорость вращения асинхронного двигателя, приводящего в движение намоточный вал, регулируется полупроводниковым преобразователем. Такая регулировка позволяет оператору, следящему за правильностью выполнения технологических операций, ступенчато ускоряться или замедляться по мере настройки станка.

Остановимся на принципе работы преобразователя частоты более подробно. В его основе лежит принцип двойного преобразования. Состоит регулятор из выпрямителя, импульсного инвертора и системы управления. В выпрямителе синусоидальное напряжение преобразуется в постоянное и подаётся на инвертор. В составе силового трёхфазного импульсного инвертора есть шесть транзисторных переключателей. Через эти автоматические ключи постоянное напряжение подаётся на обмотки статора так, что в нужный момент на соответствующие обмотки поступает то прямой, то обратный ток со сдвигом фаз 120°. Таким образом, постоянное напряжение трансформируется в переменное трёхфазное напряжение нужной амплитуды и частоты.

Необходимые параметры задаются через модуль управления. Автоматическая регулировка работы ключей осуществляется по принципу широтно-импульсной модуляции. В качестве силовых переключателей используются мощные IGBT-транзисторы. Они, по сравнению с тиристорами, имеют высокую частоту переключения и выдают почти синусоидальный ток с минимальными искажениями. Не смотря на практичность таких устройств, их стоимость для двигателей средней и высокой мощности остаётся очень высокой.

Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов

Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором. Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

  • укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,
  • применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

Читайте так же:
Регулировать электронное зажигание ветерок

Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2 : 1 = р2 : pt , 3-х скоростные двигатели — с двумя обмотками на статоре, из которых одна выполняется с переключением 2 : 1 = Рг : Pi , 4-х скоростные двигатели — с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

Регулятор оборотов электродвигателя 220в без потери мощности


Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Читайте так же:
На какой двигатель регулируют тепловой зазор

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector