Sheloil.ru

Шелл Оил
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тестер-драйвер шагового двигателя

Тестер-драйвер шагового двигателя

Когда я начал собирать свой первый самосборный 3D принтер (вариация на тему HyberCube Evolution, но об этом позже), то уже на одном из первых этапов возникла необходимость покрутить шаговые двигатели оси Z, а плата управления еще не пришла. Да и честно сказать, слишком много работы для такой простой задачи. Ведь надо сконфигурировать и залить прошивку, подключить питание, дисплей, двайверы, все это временно подвесить на соплях, сильно повышая шансы на случайное замыкание и досрочный выход из строя самой дорогой запчасти. Да и ждать не охота, вся работа встала из-за того, что мне нечем крутануть туда-сюда один или два движка для подстройки расположения механических компонентов. Руками? Не так быстро, а главное — не точно. Ну как вы крутанете одновременно два мотора, скажем на 100 оборотов (каждый оборот — 200 шагов), не ошибившись ни на шаг, т. к. это вызовет перекос? И вообще, хочется «погонять» ось приближенно к «боевым условиям», чтобы оно само гудело и ездило. Ровно и быстро. В общем, пришлось что-то выдумывать.

Так как у меня уже была горсть дешевейших и надежнейших драйверов А4988, которые суют во все китайские 3D принтеры по-умолчанию, задачу я решил «в лоб». Что там нужно, чтобы этот драйвер крутил вот такой биполярный шаговик (у меня стандартные NEMA 17 48мм)? Всего лишь указать драйверу направление (вывод DIR) логическим уровнем и подать импульсы на вывод STEP. Ну и подключить шаговик и питание, естественно. В итоге образовалась вот такая простая схема, оказавшаяся удобной и практичной. Все есть: «крутилка» скорости, тумблер «туда-сюда», тумблер «крутить/стоять». Джамперами JP1…JP3 можно выставить микрошаг в диапазоне от полного шага до 1/16, хотя на практике оказалось достаточно полношагового режима, но лишняя возможность может пригодиться. Итак, схема.

На популярном таймере 555 собран регулируемый генератор импульсов частотой примерно от 80 до 900 Герц (в режиме полного шага мотор крутится в диапазоне от «едва ползет» до «мчится со свистом»). Импульсы через тумблер SW1 попадают на вход STEP драйвера А4988, это режим «крутить». Если тумблер разомкнуть, драйвер перейдет в режим торможения (удерживания) мотора. Чтобы «отпустить» моторы, надо снять питание с драйвера. Тумблер SW2 переключает направление вращения шагового мотора. Резисторы R6 и R7 «подтягивают» соответствующие входы к «земле», на плате этих резисторов почему-то нет, хотя все прочие входы имеют «подтягивающие» к «земле» внутрисхемные резисторы. Вообще номиналы резисторов могут варьироваться в достаточно широких пределах, плюс-минус процентов 30 точно, схема сохраняет работоспособность. Точно так же не критична емкость конденсаторов, в принципе от 10нФ до 1мкФ пойдет любая керамика. Исключение — конденсатор С1, который желательно использовать пленочный. Значение емкости определяет диапазон частот, вместе с переменным резистором Р1. Номиналы С1 и Р1 можно изменять в широких пределах, сохраняя их произведение, как в исходной схеме. Скажем, можно взять емкость С1 0,47мкФ, но переменник Р1 тогда применить 20кОм. Диапазон частот, конечно, несколько сузится, но работать все будет нормально. Стабилизатор 78L05 можно заменить любым подходящим на напряжение 3.3..5В. Входное напряжение не желательно применять менее 12В и более 24В, драйвер выдерживает ток обмоток мотора 1А длительно, превышать это значение не стоит. Кто не в курсе — на драйвере А4988, как на многих других, установлен миниатюрный подстроечный резистор, которым выставляется максимальный ток шагового двигателя. Выбор максимального тока зависит от типа вашего шагового двигателя, сама же процедура многократно описана в сети, повторяться не вижу смысла. Кто не знает — гуглим «A4988 max current».

Читайте так же:
Регулировка карбюратора снегохода рысь к 68 регулировка

Таблица для выставления дробления шагов драйвера А4988 джамперами JP1..JP3

Схему собрал на второпях разведенной двусторонней платке размером 75х35мм, где верхний слой фольги играет роль общего провода (GND). Такой тип плат упрощает разводку, да и одностороннего стеклотекстолита под рукой не было. Все «земляные» выводы компонентов паяются прямо на фольгу, без отверстий, на фото видно. Панелька драйвера сделана из двух половинок распиленной панельки под выводную микросхему DIP16, также видно на фото (кликабельно). Плату в формате LAY прилагаю ниже, как и пару фоток, снятых на тапок. Номиналы деталей появляются при наведении на них курсора в программе Sprint Layout.

3d-принтер и ЧПУ станок в одном устройстве своими руками

Блог для тех, у кого чешутся руки и есть желание заниматься цифровой техникой и не только цифровой и не только техникой.

Страницы

  • Главная страница
  • Содержание
  • STM32

воскресенье, 1 июня 2014 г.

3. Изготовление драйвера шагового двигателя (для экспериментов).

Получается если повторять эту последовательность сигналов ABCD можно вращать ротор электромотора в одну сторону.
А как вращать ротор в другую сторону? Да очень просто, нужно изменить последовательность сигналов с ABCD на DCBA.
А как поворачивать ротор на конкретный заданный угол, например 30 градусов? У каждой модели шагового электромотора есть такой параметр как число шагов. У шаговиков которые я вытащил из матричных принтеров этот параметр 200 и 52, т.е. чтобы совершить полный оборот 360 градусов одним двигателям нужно пройти 200 шагов а другим 52. Получается чтобы повернуть ротор на угол 30 градусов, нужно пройти:
-в первом случае 30:(360:200)=16,666. (шагов) можно округлить до 17 шагов;
-во втором случае 30:(360:52)=4,33. (шага), можно округлить до 4 шагов.
Как видите есть достаточно большая погрешность, можно сделать вывод что чем больше шагов у мотора тем меньше погрешность. Погрешность можно уменьшать если использовать полушаговый или микрошаговый режим работы или механическим способом — использовать понижающий редуктор в этом случае страдает скорость движения.
Как управлять скоростью вращения ротора? Достаточно изменить длительность импульсов подаваемых на входы ABCD, чем длиннее импульсы по оси времени, тем меньше скорость вращения ротора.
Полагаю этой информации будет достаточно чтобы иметь теоретическое представление о работе шаговых электромоторов, все остальные знания можно будет получить экспериментируя.
И так перейдем к схемотехнике. Как работать с шаговым двигателем мы разобрались, осталось подключить его к Arduino и написать управляющую программу. К сожалению напрямую подключить обмотки мотора к выходам нашего микроконтроллера невозможно по одной простой причине — нехватка мощности. Любой электромотор пропускает через свои обмотки достаточно большой ток, а к микроконтроллеру можно подключить нагрузку не более 40 mA (параметры ArduinoMega 2560). Что же делать если есть необходимость управлять нагрузкой например 10A да еще и напряжением 220В? Эту проблему можно решить если между микроконтроллером и шаговым двигателем интегрировать силовую электрическую схему, тогда можно будет управлять хоть трехфазным электромотором который открывает многотонный люк в ракетную шахту :-). В нашем случае люк в ракетную шахту открывать не нужно, нам нужно всего лишь заставить работать шаговый мотор и в этом нам поможет драйвер шагового двигателя. Можно конечно купить готовые решения, на рынке их очень много, но я буду делать свой собственный драйвер. Для этого мне понадобятся силовые ключевые полевые транзисторы Mosfet, как я уже говорил эти транзисторы идеально подходят для сопряжения Arduino с любыми нагрузками.
На рисунке ниже представлена электрическая принципиальная схема контроллера шагового двигателя.

Читайте так же:
Регулировка заднего тормоза джили

В качестве силовых ключей я применил транзисторы IRF634B максимальное напряжение исток-сток 250В, ток стока 8,1А, этого более чем достаточно для моего случая. Со схемой более менее разобрались будем рисовать печатную плату. Рисовал в встроенном в Windows редакторе Paint, скажу это не самая лучшая затея, в следующий раз буду использовать какой-нибудь специализированный и простой редактор печатных плат. Ниже представлен рисунок готовой печатной платы.

Далее это изображение в зеркальном отражении распечатываем на бумаге при помощи лазерного принтера. Яркость печати лучше всего сделать максимальной, а бумагу нужно использовать не обычную офисную а глянцевую, подойдут обычные глянцевые журналы. Берем лист и печатаем поверх имеющегося изображения. Далее получившуюся картинку прикладываем к заранее подготовленному куску фольгированного стеклотекстолита и хорошенько проглаживаем утюгом в течении 20 минут. Утюг нужно нагреть до максимальной температуры.
Как подготовить текстолит? Во первых его нужно отрезать по размеру изображения печатной платы (при помощи ножниц по металлу или ножовкой по металлу), во вторых зашкурить края мелкой наждачной бумагой, чтобы не осталось заусенцев. Также необходимо пройтись наждачкой по поверхности фольги, снять окислы, фольга приобретет ровный красноватый оттенок. Далее поверхность обработанную наждачной бумагой нужно протереть ваткой смоченной в растворитель (используйте 646 растворитель он меньше воняет).
После прогрева утюгом, тонер с бумаги запекается на поверхность фольгированного стеклотекстолита в виде изображения контактных дорожек. После этой операции плату с бумагой необходимо остудить до комнатной температуры и положить в ванночку с водой примерно на 30 минут. За это время бумага раскиснет и ее нужно аккуратно скатать подушечками пальцев с поверхности текстолита. На поверхности останутся ровные черные следы в виде контактных дорожек. Если у вас не получилось перенести изображение с бумаги и у вас есть огрехи, тогда следует смыть тонер с поверхности текстолита растворителем и повторить все заново. У меня все получилось с первого раза.
После получения качественного изображения дорожек, необходимо вытравить лишнюю медь, для этого нам понадобится травильный раствор который мы приготовим сами. Раньше для травления печатных плат я использовал медный купорос и обычную поваренную соль в соотношении на 0,5 литра горячей воды по 2 столовые ложки с горкой медного купороса и поваренной соли. Все это тщательно размешивалось в воде и раствор готов. Но в этот раз попробовал иной рецепт, очень дешевый и доступный.
Рекомендуемый способ приготовления травильного раствора:
В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 2 чайные ложки поваренной соли. Этого раствора должно хватить для травления площади 100 см2. Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора и в процессе травления практически не расходуется.
После приготовления раствора, печатную плату необходимо опустить в емкость с раствором и наблюдать за процессом травления, тут главное не передержать. Раствор съест непокрытую тонером поверхность меди, как только это произойдет плату необходимо достать и промыть холодной водой, далее ее нужно просушить и снять с поверхности дорожек тонер при помощи ватки и растворителя. Если в вашей плате предусмотрены отверстия для крепления радиодеталей или крепежа, самое время просверлить их. Я опустил эту операцию по причине того что это всего лишь макетный драйвер шагового двигателя, предназначенный для освоения новых для меня технологий.
Приступаем к лужению дорожек. Это необходимо сделать чтобы облегчить себе работу при пайке. Раньше я лудил при помощи припоя и канифоли, но скажу это «грязный» способ. От канифоли много дыма и шлака на плате который нужно будет смывать растворителем. Я применил другой способ, лужение глицерином. Глицерин продается в аптеках и стоит копейки. Поверхность платы необходимо протереть ваткой смоченной в глицерине и наносить припой паяльником точными мазками. Поверхность дорожек покрывается тонким слоем припоя и остается чистой, лишний глицерин можно удалить ваткой или промыть плату в воде с мылом. К сожалению у меня нет фотографии полученного результата, после лужения, но получившееся качество впечатляет.
Далее необходимо припаять все радиодетали на плату, для пайки SMD компонентов я использовал пинцет. В качестве флюса использовал глицерин. Получилось очень даже аккуратно.
Результат налицо. Конечно после изготовления плата выглядела лучше, на фото она уже после многочисленных экспериментов (для этого она и создавалась).

Читайте так же:
Мопед орион 72 куба регулировка карбюратора

Листинг программы:

/*
* Тестовая программа для шаговика
*/
#include <Stepper.h>
#define STEPS 200

Stepper stepper(STEPS, 31, 33, 35, 37);

void setup()
<
stepper.setSpeed(50);
>

void loop()
<
stepper.step(200);
delay(1000);
>

Данная управляющая программа заставляет делать один полный оборот вала шагового двигателя, после перерыва длительностью в одну секунду, повторяется до бесконечности. Можно поэкспериментировать со скоростью вращения, направлением вращения а также углами поворотов.
Драйвер шагового двигателя (версия 2)

Драйвер шагового двигателя A4988. Подключения к Arduino и пример использования

Шаговые двигатели представляют собой электромеханические устройства, задачей которых является преобразование электрических импульсов в перемещение вала двигателя на определенный угол. Достоинствами шаговых двигателей по сравнению с простыми являются:

  • Высокая точность позиционирования и повторяемости — качественные ШД имеют точность не хуже 2,5 % от величины шага, при этом данная ошибка не накапливается при последующих шагах;
  • Шаговый двигатель может быстро стартовать, останавливаться и выполнять реверс;
  • Четкая взаимосвязь угла поворота ротора от количества входных импульсов (в штатных режимах работы) позволяет выполнять позиционирование без применения обратной связи;
  • Шаговые двигатели обеспечивают получение сверхнизких скоростей вращения вала без использования редуктора;
  • Шаговые двигатели работают в широком диапазоне скоростей, поскольку. скорость напрямую зависит от количества входных импульсов.

Шаговые двигатели применяются там, где требуется высокая точность перемещений. Примеры использования – принтеры, факсы и копировальные машины, станки с ЧПУ, 3D-принтеры. Для управления шаговыми двигателями используют специальные устройства – драйверы шаговых двигателей. Популярный драйвер шагового двигателя А4988 (рис. 1) работает от напряжения 8 — 35 В и может обеспечить ток до 1 А на фазу без радиатора (и до 2 A с радиатором). Модуль A4988 имеет защиту от перегрузки и перегрева. Одним из параметров шаговых двигателей является количество шагов на один оборот 360°. Например, для шаговых двигателей Nema17 это 200 шагов на оборот, т.е 1 шаг равен 1.8°. Драйвер A4988 позволяет увеличить это значение за счёт возможности управления промежуточными шагами и имеет пять режимов микрошага (1(полный), 1/2, 1/4, 1/8 и 1/16).

Читайте так же:
Регулировка оборотов машин постоянного тока

Технические характеристики A4988

  • напряжения питания: 8-35 В
  • режим микрошага: 1, 1/2, 1/4, 1/8, 1/16
  • напряжение логики: 3-5.5 В
  • защита от перегрева
  • максимальный ток на фазу: — 1 А без радиатора; — 2 А с радиатором
  • размер: 20 х 15 мм
  • без радиатора: 2 г

Назначение контактов драйвера A4988

  • ENABLE – включение/выключение драйвера
  • MS1, MS2, MS3 – контакты для установки микрошага
  • RESET — cброс микросхемы
  • STEP — генерация импульсов для движения двигателей (каждый импульс – шаг), можно регулировать скорость двигателя
  • DIR – установка направление вращения
  • VMOT – питание для двигателя (8 – 35 В)
  • GND – общий
  • 2B, 2A, 1A, 1B – для подключения обмоток двигателя
  • VDD – питание микросхемы (3.5 –5В)

Выводы драйвера A4988

Значение микрошага устанавливается комбинацией сигналов на входах MS1, MS2, и MS3. Есть пять вариантов дробления шага

Комбинация значений для выбора микрошага

MS1MS1MS1Дробление шага
1
11/2
11/4
111/8
1111/16

Для работы в режиме микрошага необходим слабый ток. На модуле A4988 поддерживает тока можно ограничить находящимся на плате потенциометром. Драйвер очень чувствителен к скачкам напряжения по питанию двигателя, поэтому производитель рекомендует устанавливать электролитический конденсатор большой емкости по питанию VMOT для сглаживания скачков.

Внимание ! — Подключение или отключение шагового двигателя при включённом драйвере может привести выходу двигателя из строя.

Подключение драйвера к Arduino

Схема подключения A4988 к плате Arduino

Схема подключения A4988 к плате Arduino

Схема подключения драйвера A4988 для управления биполярным шаговым двигателем показана на рисунке выше. Вывод RESET подключен к выводу SLEEP, чтобы на нем был высокий уровень HIGH. Загрузим на плату Arduino скетч из примера №1, который управляет движением биполярного шагового двигателя с постоянной скоростью на один оборот в одну сторону, затем в другую, и далее в цикле.

Если после загрузки скетча не происходит движения двигателя, проверьте правильность подключения обмоток к выводам драйвера A4988. К выводам 2B и 2A (1A и 1B) подключаются провода двигателя, которые «прозваниваются» тестером.

Второй пример использования

В качестве еще одного примера использования рассмотрим управление дроблением шага и направлением вращения шагового двигателя с платы Arduino. для этого нам потребуются следующие компоненты:

  • Плата Arduino Uno -1;
  • Драйвер A4988 — 1;
  • Шаговый двигатель NEMA17 — 1;
  • Потенциометр 10 кОм — 1;
  • Кнопка — 1;
  • Переключатель 2-х позиционный — 1;
  • Резистор 10 кОм – 3;
  • Провода MF — 20

Соединение деталей по схеме на рисунке ниже

Схема подключения для управления скоростью и направлением движения

Приступим к написанию скетча. Нажатие на кнопку включает/выключает двигатель, подавая сигнал LOW/HIGH на вход ENABLE драйвера A4988. С помощью переключателя выбираем направление вращения двигателя (сигнал с переключателя подается напрямую на вход DIR драйвера A4988). C помощью потенциометра мы выбираем один из режимов микрошага. Содержимое скетча представлено в примере кода №2. двигателя с постоянной скоростью на один оборот в одну сторону, затем в другую, и далее в цикле.

Читайте так же:
Как отрегулировать ручной тормоз на авенсисе

Драйвер шагового двигателя EasyDriver A3967

Драйвер биполярного шагового двигателя с поддержкой «микрошага», разработанный товарищами из www.schmalzhaus.com, базируется на микросхеме A3967.

Характеристики :

  • Максимальный ток: 750 мА на одну фазу.
  • Напряжение привода двигателя: от 7В до 30В.
  • Возможность ограничения выходного тока: от 150мА до 750мА
  • 1/8, 1/4 и 1/2 микрошаговые режимы работы.
  • Управление 3 и 5 вольтовой логикой.
  • Не требует отдельного питания логической части, для этого на плате находится стабилизатор LM317.
  • Драйвер не поддерживает униполярные двигатели.

Назначение элементов и выводов драйвера:

Выводы:
  • MOTOR и выходы A и B — Подключение обмоток шагового двигателя. (A+ A- B+ B-)
  • PFD — Percent Fast Decay Input, тонкие настройки ШИМ драйвера микросхемы, скорость нарастания ШИМ.
  • RST — Сброс драйвера, при низком уровне сбрасывает внутренний транслятор и отключает все выходные драйверы.
  • ENABLE — При низком уровне, отключатся все выходы драйвера.
  • MS1 и MS2 — Управление микрошаговым режимом. По умолчанию входы притянуты к питанию и выставлен шаг 1/8. Для установки полного шага, на оба входа нужно подать низкий уровень, для полушага только на MS2, для 1/4 шага, только на MS1. (полный шаг (0,0), полушаг (1,0), шаг 1/4 (0,1) и шаг 1/8 (1,1).
  • PWR IN и вход M+ — Напряжение питания драйвера и моторов, также это напряжение подается на стабилизатор LM317 для питания логической части микросхемы.
  • +5V — Выход напряжения со стабилизатора LM317, можно использовать для питания Arduino
  • SLP — Сон, если подать низкий уровень, будет отключена внутренняя схема для минимизации потребления энергии.
  • STEP — Шаг, При переходе с низкого уровня на высокий, драйвер делает один шаг или микрошаг, если драйвер работает в микрошаговом режиме.
  • DIR — Состояние входа (высокийнизкий) определяет направление вращения двигателя.
  • GND — масса, все массы соединены.
Элементы:
  • Потенциометр CUR ADJ — Установка ограничения максимального тока подаваемого на двигатель, от 150 мА до 750 мА.
  • Перемычка APWR — отключает стабилизатор LM317 от цепи питания 5 вольт. По умолчанию соединена.
  • Перемычка 3/5 — Установка напряжения на выходе LM317, 5 или 3.3 вольта, По умолчанию разомкнута.

Кратко про особенности микрошагового режима:

Сверху графики работы драйвера в полношаговом и микошаговом режиме.

В полношагом режиме, драйвер запитывает обмотки двигателя полным током, а направление тока в обмотках двигателя изменяется с каждым шагом. Считается штатным режим работы двигателя. Главное достоинство, простота реализации. Из недостатков, двигатель сильнее подвержен вибрации и резонирует на низких скоростях.

В микрошаговом режиме происходит деление шага, в данном случаи на 8, с каждым шагом обмотки запитаны не полным током, а уровнем изменяемым по синусоидальному закону. Такой метод дает возможность фиксировать вал в промежуточных положениях между шагами, увеличить количество шагов и точность позиционирования вала двигателя, уменьшает вибрацию двигателя, особенно на низких скоростях, но требует применения специализированных драйверов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector