Sheloil.ru

Шелл Оил
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор звуковой частоты

Генератор звуковой частоты

В литературе опубликовано большое число схем низкочастотных генераторов синусоидального сигнала, тем не менее эта тема продолжает оставаться актуальной. Генератор низкой частоты (НЧ) является одним из основных приборов измерительной техники. В то же время построить простой генератор НЧ с малым коэффициентом гармоник сложно. Современные усилители мощности имеют малые нелинейные искажения, поэтому для контроля их параметров требуются измерительные генераторы с высокой спектральной чистотой выходного напряжения. Автор предлагает относительно простой генератор НЧ с малыми нелинейными искажениями.

Проблемы, возникающие при проектировании генераторог НЧ, заключаются, в частности, в следующем. Перестраиваемый по частоте RC-генератор низкой частоты, как правило, содержит регулируемый фазовращатель и каскад автоматической регулировки усиления (АРУ). Для получения синусоидального выходного напряжения с малым содержанием гармоник желательно, чтобы при перестройке генератора коэффициент передачи регулируемого фазовращателя оставался постоянным.
На практике этого добиться трудно. Обычно в качестве фазовращателя используется мост Вина или двойной Т-образный мост, которые перестраиваются сдвоенным переменным резистором или сдвоенным конденсатором переменной емкости. Разбаланс (т. е. несинхронное изменение) сопротивлений резисторов или емкостей конденсаторов приводит к изменению коэффициента передачи фазовращателя и искажению формы выходного напряжения, т. к. каскад АРУ не может полностью компенсировать изменение коэффициента передачи фазовращателя.
Конечно, все остальные каскады генератора НЧ (кроме каскада АРУ) также должны иметь постоянный коэффициент передачи, но построить широкополосный усилитель или фазоинвертор со стабильным коэффициентом передачи нетрудно, и здесь никаких проблем не возникает.

Рис.1

На рис. 1 приведена схема генератора, в котором для повышения качества выходного сигнала применены фазовращатели с постоянным коэффициентом передачи.
Генератор состоит из четырех последовательно соединенных каскадов. На операционных усилителях DA1.1 и DA1.2 выполнены два одитгаковых перестраиваемых фазовращателя первого порядка [1]. На ОУ DA2.1 и VT1 построен каскад регулировки усиления, а на ОУ DA2.2 — фазоинвертор. В качестве фазовращателей используются фазовые фильтры первого порядка. Модуль коэффициента передачи такого фильтра от частоты не зависит, а создаваемый им фазовый сдвиг изменяется от 0° на низких частотах до 180° на высоких. На рабочей частоте два фазовых фильтра на DA1.I и DA1.2 имеют общий фазовый сдвиг сигнала 180°, поэтому для обеспечения баланса фаз в генератор включен фазоинвертор на DA2.2, создающий дополнительный фазовый сдвиг 180°.
Каскад АРУ на DA2.1 работает следующим образом. При увеличении амплитуды колебании увеличивается напряжение на 013 (рис. 1). Транзистор VT1 запирается, что ведет к увеличению глубины отрицательной обратной связи, и усиление каскада уменьшается, амплитуда выходного напряжения стабилизируется. Примененная система стабилизации эффективно работает во всем диапазоне частот и не создает нелинейных искажений даже на самых низких частотах (в отличие от термис-торов и ламп накаливания).
Если генератор собран без ошибок и из исправных деталей, то он практически не требует настройки. Нужно только при помощи подстрочного резистора R10 установить на выходе генератора амплитуду колебаний 1.. .1,8 В. Для того, чтобы можно было плавно подстраивать амплитуду выходного напряжения, в качестве R10 желательно использовать многооборотный: под-строечный резистор, например СП5-2. Оксидные конденсаторы С9,01—С13 могут быть любого типа, остальные конденсаторы — металлопленоч-ные, например, К73-5, К73-9, К73-16, К73-17 и керамические (22 пф). В качестве VT1 можно использовать транзисторы КПЗОЗ с небольшим напряжением отсечки. К157УД2 можно заменить практически любыми широкополосными операционными усилителями с низким напряжением питания и небольшим потребляемым током.
В качестве R1 и R5 желательно использовать сдвоенный переменный резистор, но это не обязательно. Можно перестраивать генератор только одним резистором R1 (или R5). При этом перестройка генератора по частоте получается более плавной, но диапазон перестройки частоты уменьшается. В генераторе может возникнуть возбуждение на частоте порядка 1 МГц. В этом случае следует увеличить емкость корректирующих конденсаторов С4, С8, С10, С14. Сильно увеличивать их емкость нежелательно, т. к. это может привести к возрастанию уровня гармоник в выходном напряжении.
При напряжении питания 9 В генератор потребляег ток 8,5 мА. Содержание гармоник в выходном напряжении не измерялось из-за отсутствия соответствующей аппаратуры. Форма напряжения контролировалась только при помощи осциллографа.

Читайте так же:
Как самому отрегулировать восьмерочный карбюратор

ЛИТЕРАТУРА:
1. Б. Успенский. Активные RC-филътры. В помощь радиолюбителю. Выпуск 92, с. 65, 66.

Что такое эквалайзер и как им пользоваться

Что такое эквалайзер и как им пользоваться

Эквалайзеры сегодня повсюду — в смартфонах, медиаплеерах, телевизорах, бытовой аудиотехнике, автомагнитолах и т.д. Однако мало какой производитель техники или софта поясняет, как ими пользоваться. А ведь это очень важный момент, от которого зависит, насладитесь вы звуком или нет.

В современной бытовой аудиотехнике и цифровых проигрывателях эквалайзеры позволяют:

  • Поправить звучание акустической системы или наушников.
  • Скорректировать недостатки комнаты, в которой расположена акустика.
  • Сделать более ясным звук старых или некачественных записей.
  • Подчеркнуть или затенить некоторые частоты по своему вкусу.

Чаще всего с помощью эквалайзера прибавляют или убирают бас, делают вокал менее резким или более четким, убирают неприятные призвуки в верхнем диапазоне: например, цоканье тарелок, либо, наоборот, добавляют записи воздуха аккуратным прибавлением высоких частот.

История эквалайзеров

Первый эквалайзер появился, как это ни странно, не в музыкальной, а в киноиндустрии. В 30-х годах прошлого века, на заре звуковых фильмов, был создан прибор с двумя ползунками и выбором частот — Langevin 251A. Он позволял поправить звучание аудиосистемы кинотеатра, чтобы голоса актеров и музыка не резали слух, а также звучали более естественно. Так был создан первый параметрический эквалайзер.

Почти одновременно с ним компания Cinema Engineering разработала первый шестиполосный графический эквалайзер (7080). Именно такой тип эквалайзеров чаще всего встречается в бытовой аудиотехнике и аудиософте.

Во время Второй мировой войны было не до эквалайзеров, зато в 60-х, с появлением транзисторов и развитием микроэлектроники, случился настоящий бум, породивший бесчисленное количество приборов и подтолкнувший развитие звукоинженерии.

Настоящей находкой для меломанов эквалайзер стал в 70-е и 80-е годы, с появлением катушечных магнитофонов и аудиокассет. Многие любители музыки переписывали понравившиеся альбомы у знакомых или с радио, качество звучания при этом страдало. Вот тут-то и приходила на помощь эквализация: при грамотном подходе можно было настроить баланс звука не хуже, чем в оригинале! Не удивительно, что именно тогда в каждый музыкальный центр и кассетный проигрыватель производители старались вмонтировать эквалайзер.

Виды эквалайзеров

Графический эквалайзер повсеместно встречается в любительской технике и бытовых аудиоприборах. Принцип его работы прост: он делит частотный диапазон на полосы, каждую из которых можно поднять или опустить на определенное значение — как правило, до 12 Дб. Чаще всего крайняя левая и крайняя правая полосы — это фильтры низких и высоких частот, то есть они убавляют все, что перед или после них соответственно.

Такой эквалайзер очень нагляден, любой человек сможет им пользоваться. Но у него есть и недостатки. Между полосами, на которые эквалайзер делит диапазон, есть пересечения — кроссфейды. Если опустить несколько полос, то между ними образуются пики. В итоге получается довольно неприятный эффект: некоторые узкие частоты начинают выпирать, и с этим ничего нельзя поделать. Чем больше в приборе полос — тем меньше этот эффект выражен. В бытовых эквалайзерах их обычно 7–18 штук, в профессиональных — 25–31.

Параметрические эквалайзеры более точные и деликатные. Они чаще всего используются в профессиональной аудиотехнике и позволяют:

  1. Очень точно найти нужную частоту (параметр Frequency, измеряется в Герцах).
  2. Настроить ширину полосы (безразмерный параметр Q).
  3. Прибавить или убавить определенное количество децибел (параметр Gain).

Параметрические эквалайзеры позволяют работать с нужной частотой, не затронув ничего лишнего. Причем, если аналоговые приборы имеют всего 3–5 регулируемых полос, то в современных цифровых плагинах количество полос зачастую вообще не ограничено.

Эквалайзеры в музыке и звукорежиссуре

Музыкантами и звукоинженерами эквалайзеры используются повсеместно. К примеру, гитаристы и басисты используют их в усилителях и педалях эффектов для создания уникального звучания. Эквализация помогает занять инструменту свое место в миксе, поэтому без нее невозможно себе представить современную музыку, будь это рок или электронные жанры.

Читайте так же:
Регулировка карбюратора ручной косилки

Наверняка на живом концерте любимой группы вы сталкивались с оглушительным свистом или гудением. Это, так называемая, обратая связь — к ней приводит одновременная работа микрофонов и колонок. Тогда звукорежиссер ищет с помощью эквалайзера частоты, на которых возникают неприятные призвуки, и подавляет их. В некоторые микрофоны или микшеры подавители обратной связи уже встроены и работают автоматически. То же самое происходит в студии — инструмент или сама комната, в которой он записан, может прибавлять к сигналу неприятные резонансы, которые специалист ищет и вырезает. Это позволяет лучше «уложить» сигнал в общий микс.

Звукорежиссеры с помощью эквалайзера находят зашкаливающие частоты и убирают их.

В студийной работе эквализация позволяет очень тонко настроить частотный баланс инструментов: убрать лишний саббас или «коробочную» середину в барабанах, осветлить вокал добавлением высоких частот, устранить частотные конфликты инструментов, подчеркнуть приятные гармоники и т.д.

Сегодня выпущено огромное количество VST-плагинов для эквализации — от эмуляторов аналоговых приборов до динамических эквалайзеров с тонкими настройками и дополнительными функциями. Последние позволяют, например, видеть амплитудно-частотную характеристику (АЧХ) до и после вмешательства, обработать по-разному левый и правый либо центр и края стереосигнала, ослабить его только тогда, когда он звучит слишком громко и т.п. Это дает возможность работать с хирургической точностью, оставляя звучание обработанного сигнала максимально натуральным.

Советы по настройке эквалайзера

Вкус к музыке и приятным звукам весьма субъективен, поэтому лучше всего настраивать эквалайзер, ориентируясь на свой слух и не обращая внимания на визуализацию АЧХ. При этом всегда стоит помнить: если запись выполнялась в студии, то звукорежиссеры и мастеринг-инженеры уже прослушали трек на всех возможных акустических системах, включая дешевые наушники и компьютерные колонки. После чего они обработали его таким образом, чтобы получить оптимальное звучание на бытовой акустике. Поэтому нередко лучшей настройкой эквалайзера будет кнопка “Выключить”.

Иногда, лучшая настройка эквалайзера — это его отключение.

Эквалайзеры в бытовых приборах не самые качественные, поэтому радикальное прибавление гармоник может привести к искажению сигнала: бас будет гудеть, на вокале и тарелках появляется неприятный скрежет, у барабанов исчезнет атака и панч. Так что лучше всего сначала работать эквалайзером на понижение — убирать то, чего слишком много. Это справедливо даже для дорогих студийных приборов — все звукоинженеры советуют сначала вырезать неприятные частоты и только потом аккуратно добавлять то, чего не хватает. Например, если не хватает баса, приглушите высокие и немного средних частот, а потом просто прибавьте громкость.

В целом, алгоритм работы с эквалайзером довольно прост:

  1. Внимательно прослушать трек и выделить в нем звучание каждого инструмента.
  2. Поочередно поднять, опустить, а затем вернуть на ноль каждый ползунок в эквалайзере, поняв, как он воздействует на звук каждого из инструментов в треке. Это позволит выявить неприятные частоты и резонансы.
  3. Убрать частоты, которые «режут» слух и кажутся избыточными. Чаще всего это цоканье тарелок, свист шипящих согласных в вокале, бубнение баса, неприятная «коробочная» середина в гитарах и синтезаторах.
  4. Добавить частоты, которых не хватает, по своему вкусу, компенсировав тем самым образовавшиеся провалы.

Основные частоты инструментов и вокала

16–60 Гц — область саб-баса, который больше ощущается телом, чем улавливается слухом. Здесь находится «пинок» бочки и нижние обертоны баса в роке и электронной музыке. Чрезмерное усиление сделает звук мутным, а чрезмерное ослабление приведет к потере «кача». При этом большинство аудиосистем не в состоянии воспроизвести этот диапазон частот без сабвуфера.

60–250 Гц — область основных гармоник баса и барабанов. Их усиление придаст треку больше энергетики, однако может задавить инструменты из области средних частот. Излишнее ослабление приведет сделает звук куцым.

Читайте так же:
Насос для фонтана с регулировкой мощности

250–500 Гц — область нижних гармоник рабочего барабана, мужского вокала и гитар. Именно их можно задавить чрезмерным усилением баса. Однако слишком большое усиление этих частот сделает звук «коробочным», будто акустическую систему поместили в большой ящик.

500–800 Гц — в этом диапазоне могут лежать низкие гармоники женского вокала, часть тела мужского вокала и некоторых инструментов. Но, в целом, чаще всего именно эту область можно немного убавить, чтобы сделать звук более четким и собранным: бас станет плотнее, верха — ярче.

800 Гц — 3 кГц — это область гармоник вокала, гитары, фортепиано, синтезаторов и многих других инструментов. Поднятие ползунка в этом диапазоне прибавит им тела и насыщенности.

3–6 кГц — здесь лежит презенс гитар, вокала, синтезаторов, рабочего барабана, томов, а также тело скрипок и высоких духовых. Прибавлением этих частот можно добавить присутствия этих инструментов в миксе — они как бы становятся ближе к слушателю за счет увеличения их яркости. Убавление, наоброт, затенит их.

6–10 кГц — здесь находится тело тарелок и скрипок, верхние обертоны гитар и синтезаторов, а также шипящие согласные вокала: звуки «с», «ц», «ш» и «щ». Прибавление таких частот сделает звучание более прозрачным и воздушным, но можно легко перестараться и сделать верха слишком резкими, вплоть до неприятного свиста и скрежета. Чрезмерное убавление сделает звук глухим и ватным.

10–16 кГц — в этом диапазоне лежат верхние обертона тарелок и некоторых высоких инструментов, например, флейт пикколо. Подъем этих частот позволит добавить треку еще больше воздуха, но, в то же время, может появиться шум, свист и шипение — опускание ползунков даст возможность от них избавится.

16 кГц и выше — это верхняя граница слуха большинства людей. Бытовые эквалайзеры редко имеют полосы дальше этого значения, и не каждая акустическая система сможет их воспроизвести.

Автоматическая регулировка усиления

Автоматическая регулировка усиления, АРУ (англ.  automatic gain control , AGC ) — процесс, при котором выходной сигнал некоторого устройства, как правило электронного усилителя, автоматически поддерживается постоянным по некоторому параметру (например, амплитуде простого сигнала или мощности сложного сигнала), независимо от амплитуды (мощности) входного сигнала. В аппаратуре, использующейся для прослушивания радиовещательного эфира, АРУ также называют устарелым термином автоматическая регулировка громкости (АРГ), а в приёмниках проводной связи — автоматической регулировкой уровня. В импульсных приёмниках (радиолокационных и других) применяют АРУ, учитывающие особенности работы в импульсном режиме.

АРУ применяется для исключения перегрузки выходных каскадов приёмников при больших входных сигналах. Используется в бытовой аппаратуре, в приёмниках спутников связи и т. д. Также, существует ручная регулировка усиления (РРУ), выполняется на пассивных или активных (электронных) радиоэлементах или с помощью аттенюаторов. [1]

Содержание

История создания

В 1925 Гарольд Олден Уилер изобрел автоматическую регулировку громкости (АРГ) и получил патент. Карл Кюпфмюллер [en] издал анализ систем АРУ в 1928. [2] К началу 1930-х все бытовые радиоприемники включали автоматическую регулировку громкости. [3]

Классификация

Существует три типа АРУ: простая, усиленно-задержанная и просто задержанная. Или по типу сигнала схемы АРУ бывают двух типов:

Также, если искажения сигнала не важны, применяют схему ограничителя.

Устройство

Напряжение сигналов, поступающих на вход приёмника, как правило значительно меняется: из-за различия передаваемой мощности передатчиков и расстояний их от места приёма, замираний сигналов при распространении, резкого изменения расстояний и условий приёма между передатчиком и приёмником, установленными на движущихся объектах (самолётах, автомобилях и т. д.), и других причин. Это приводит к недопустимым колебаниям или искажениям сигналов в приёмнике. Система АРУ стремится минимизировать различия напряжения выходного и входного сигнала приёмника. Это осуществляется посредством цепей, которые передают выпрямленное детектором регулирующее напряжение на базы транзисторов, усилителей высокой, промежуточной частоты и преобразователя частоты, которые уменьшают их усиление с увеличением напряжения сигнала на входе и наоборот: происходит компенсация в приёмнике изменений напряжения входных сигналов. Основные параметры систем АРУ:

  • Динамический диапазон (дБ) — это глубина изменения входного сигнала (разница между минимальным и максимальным сигналом), при котором ещё выходной сигнал находится в допустимых пределах;
  • Время срабатывания АРУ (дБ/с) — отражает скорость реакции АРУ на скачок входного сигнала. Данный параметр равен бесконечности (нулевое время срабатывания) для ограничителя сигнала.
Читайте так же:
Как регулировать гур на волге

Важным свойством системы АРУ является наличие выхода, показывающего уровень входного сигнала (невозможно сделать для ограничителя).

Схемы АРУ

Обратная

Эта схема получила такое название, из-за того, что управляющее напряжение (Uупр) подается со стороны выхода в направлении входа РУ. Пропорционально уровню входного сигнала обеспечивается управляющее напряжение, благодаря коэффициенту передачи КД детектора АРУ (ДЕТ): Uупр = КД ⋅ Купр ⋅ Uвых. Фильтр АРУ (ФНЧ) отфильтровывает составляющие частот модуляции и пропускает медленно меняющиеся составляющие напряжения Uупр. Цепь АРУ называется простой, если она состоит только из детектора и фильтра. В цепь АРУ может включаться усилитель, устанавливаемый после детектора (УПТ).

Прямая

Входное напряжение Uвх детектируется, и за счёт этого формируется управляющее напряжение Uупр. Выходное напряжение получается путём умножения Uвх на коэффициент усиления Ko. Таким образом, при увеличении Uвх уменьшается Ko; при этом их произведение может оставаться постоянным, что позволяет реализовать идеальную характеристику АРУ, но практически добиться этого не удается. Прямая схема АРУ имеет некоторые существенные недостатки, один из которых состоит в необходимости включать перед детектором в цепи АРУ дополнительный высокочастотный (ВЧ) усилитель с большим коэффициентом усиления, прямая АРУ также нестабильна, то есть подвержена воздействию различных дестабилизирующих факторов. В связи с этим она нашла ограниченное применение.

Пассивная

Пассивные АРУ-устройства, не потребляющие электрическую энергию, то есть не имеющие в своём составе источников тока. Как правило, такие пассивные АРУ выполняются в виде аттенюаторов, каждый из резисторов которого представляет собой термосопротивление (термисторы). С повышением температуры сопротивление увеличивается, что вызывает уменьшение вносимого ослабления аттенюатором. И, наоборот, при понижении температуры окружающей среды ослабление аттенюатора увеличивается.

Автоматическая регулировка уровня записи

АРУЗ — автоматическая регулировка уровня записи в устройствах магнитной звукозаписи.

В общем случае АРУЗ выравнивает амплитуду звукового сигнала для записи равномерного и качественного звука.

Автоматическая регулировка уровня записи применяется в съемочной технике и других устройствах магнитной звукозаписи, используемой в видеопроизводстве для предотвращения проблем ручной регулировки уровня записи звука. При ручной регулировке уровня записи звука необходимо постоянно следить за индикатором звука и устанавливать приемлемый уровень записи звука согласно уровню принимаемого звукового сигнала. Это отвлекает от работы с визуальным содержанием кадра. При этом даже при постоянном слежении за индикатором записи звука избежать кратковременных перегрузов или, наоборот, потери звуковой информации не удаётся. Ручное регулирование уровня записи трубет временных затрат, что негативно сказывается на результатах работы.

Тема: АРУ в УНЧ ?

МиниатюрыМиниатюры

  • Просмотр профиля
  • Сообщения форума
  • Записи в дневнике
  • Домашняя страница

Вкусная, полезная пища тоже не всем подходит — она дорогая.
В эфир мы излучаем совершенно разные по качеству сигналы.
Частая причина — простейший, а то и случайный микрофонный усилитель (МУ).
Точно также разные сигналы мы слышим и на прием.
Причина — простейший УНЧ.
Беда. Многие не любят собранных на дискретных элементах УНЧ и МУ.
Но ведь простое далеко не всегда лучшее!

Я уверен, что УНЧ из книги В.Т. Полякова отлично работает.
Просто его выходная мощность соответствует применяемым в
выходном каскаде транзисторам — МП37 и МП42.
Микросхема TDA2003 это очень достойный вариант для тех, кто сильно спешит выйти в эфир.
Раз уже они так спешат, то их и останавливать не надо.

Читайте так же:
Пневмогайковерт с регулировкой момента затяжки для грузовых машин

Те, кто в эфире уже был тысячи раз, могут сконцентрировать свое внимание на более высококачественном УНЧ, предназначенным именно для каналов радиосвязи.
Не верите, а что мешает проверить?
Cпаяйте эту схему и послушайте.
Уверен, если Вы ничего там не нахомутаете и если не будете кривить душой, то скоро напишите мне хорошее письмо с благодарностью за схему. Так уже было и не раз.

В реальной жизни, а не в Интернете или на бумаге разницу между работой УНЧ с подобной схемотехникой и простейшими схемами может не услышать только глухой.
Разница есть и она огромная.

Если коротко, то это так:
Этот УНЧ не перекачивается входным сигналом.
Если даже в приемнике нет АРУ по ПЧ, то все сигналы идут ровно, без выбросов.
Отличная, а не размазанная АЧХ.
Если в приемнике есть АРУ, то этот УНЧ только дополнит качество.

Подробно:
"Схема представляет собой четырехкаскадный усилитель с двухтактным выходом.
Выходные транзисторы КТ801А устанавливаются на небольшие радиаторы.
Нагрузка включается без выходного трансформатора через разделительную емкость С6 100 мк исключающую протекание постоянного тока по обмотке громкоговорителя.
Для высококачественного приема к выходу УНЧ можно подключать так же и головные телефоны, но последовательно с ними включается резистор 270 Ом.
Для получения противофазного напряжения раскачки выходного каскада в предварительном каскаде использованы транзисторы с различной проводимостью.
Для снижения коэффициента нелинейных искажений усилитель охвачен глубокой отрицательной обратной связью, напряжение которой через резистор R6 10 к подается на базу транзистора VT2 работающего в дифференциальном каскаде. База транзистора VT1 с помощью делителя R1-R2 соединена с искуственной средней точкой источника питания.

Таким образом, в дифференциальном каскаде сравнивается потенциал на выходе усилителя с потенциалом искуственной средней точки источника питания.
Если постоянное напряжение на выходе усилителя становится отличным от половины напряжения питания, то на выходе дифференциального усилителя появится сигнал, который усиливается последующим каскадом и подается в противофазе на выход усилителя.

Вместо диодов VD1 и VD2 Д223 без ухудшения качества можно применить КД103А (2Д103А). Все резисторы приненяемые в усилителе мощностью 0,25 ватта, расброс по номиналу +/- 10%.
Исключением являются R15 и R16 которые 0,5 ватта и имееют расброс +/- 5%.
Резистор R1 следует подобрать по симметрии ограничения.
Его номинал 12 к однако, иногда неоходим его подбор в пределах 8,2 к — 18 к.
Конденсатор С4 0,01 мк в коллекторной цепи транзистора VT3 препятствует возбуждению усилителя на высоких частотах. Резистором R9 390 Ом устанавливается начальный ток потребления оконечного каскада усилителя.

Усилитель развивает 3 вольта на нагрузке 8 Ом на частоте сигнала 1000 Гц и входном напряжении 0,3 в.
Неравномерность частотной характеристики в полосе частот 300 — 3500 Гц не превышает +/- 4 дБ относительно уровня на частоте 1000 Гц. Уровень шумов и фона на выходе усилителя не превышает минус 60 дБ при закороченном входе (3 мВ на нагрузке 8 Ом)".

Много денег такой УНЧ не стоит, а желания и умения паять требует.

Данный УНЧ может быть использован не только в составе УНЧ трансивера, но и в большей степени как Усилитель Громкой Связи для существующего связного приемника или трансивера, который уже имеет свой встроенный УНЧ.

Напряжение на входе схемы 50 мВ. 10 В.
Динамик следует применять не случайный, а тот, что указан
на схеме — 2ГД-40 (4 Ома) или 3ГДШ-2-8-100 (8 Ом).

Недостатки схемы:
С учетом перерыва на обед требуется 1 день на ее изготовление.
Отсутствует какая-либо настройка.
Правильно спаял, включил и забыл. Нет мук — нет и романтики!
Рекомендуется не всем, а тем, кто ищет высокого качества.
Не забудьте:
Выходные транзисторы КТ801А устанавливаются на небольшие радиаторы.
http://www.cqham.ru/nf2.htm
EW1MM.

МиниатюрыМиниатюры

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector